Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ISA Trans ; 150: 298-310, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38762355

RESUMEN

A multi-sensor information fusion algorithm based on fault-tolerant Kalman filter is proposed in phase-sensitive optical time-domain reflectometer (Φ-OTDR) system, for achieving fading-free distributed vibration sensing. Firstly, a fault-tolerant dual-core complementary array model is designed. The Rayleigh scattering signal denoising, and vibration existence judgment of localization points are carried out to obtain the differentiated frequency demodulation results of the sensing points of the dual-core fiber array. Then a fault-tolerant control strategy is used to determine the sensor weight coefficients and vibration judgment coefficients during data fusion processing, and array data fusion is carried out based on time series data using Kalman filter to realize error value identification and filling. The advantage of this method is the combination of redundant data in a complementary way to improve the system stability. The frequency response ranges from 10 Hz to 2400 Hz and the localization accuracy is 98.33%. The influence of key parameters on the frequency demodulation performance of fault-tolerant Kalman filter is discussed, and a standard deviation of 14.6 Hz and an average error of 7.6 Hz are obtained. The demodulation frequency data matrix obtained by the classical demodulation method has a demodulation error probability of 89.18%, which proves the widespread existence of demodulation errors in vibration signals. The fusion error of demodulation frequency is reduced to 0.25 Hz, the frequency demodulation accuracy reaches 100%, and the demodulation error caused by interference attenuation can be completely eliminated. This system based on fault-tolerant Kalman filter has the characteristics of simple multiplexing structure, interference fading resistance and stable demodulation performance.

2.
Sensors (Basel) ; 23(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37896707

RESUMEN

In the domain of optical fiber distributed acoustic sensing, the persistent challenge of extending sensing distances while concurrently improving spatial resolution and frequency response range has been a complex endeavor. The amalgamation of pulse compression and frequency division multiplexing methodologies has provided certain advantages. Nevertheless, this approach is accompanied by the drawback of significant bandwidth utilization and amplified hardware investments. This study introduces an innovative distributed optical fiber acoustic sensing system aimed at optimizing the efficient utilization of spectral resources by combining compressed pulses and frequency division multiplexing. The system continuously injects non-linear frequency modulation detection pulses spanning various frequency ranges. The incorporation of non-uniform frequency division multiplexing augments the vibration frequency response spectrum. Additionally, nonlinear frequency modulation adeptly reduces crosstalk and enhances sidelobe suppression, all while maintaining a favorable signal-to-noise ratio. Consequently, this methodology substantially advances the spatial resolution of the sensing system. Experimental validation encompassed the multiplexing of eight frequencies within a 120 MHz bandwidth. The results illustrate a spatial resolution of approximately 5 m and an expanded frequency response range extending from 1 to 20 kHz across a 16.3 km optical fiber. This achievement not only enhances spectral resource utilization but also reduces hardware costs, making the system even more suitable for practical engineering applications.

3.
Sensors (Basel) ; 23(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420569

RESUMEN

In the paper, the effect of spontaneous Brillouin scattering (SpBS) is analyzed as a noise source in distributed acoustic sensors (DAS). The intensity of the SpBS wave fluctuates over time, and these fluctuations increase the noise power in DAS. Based on experimental data, the probability density function (PDF) of the spectrally selected SpBS Stokes wave intensity is negative exponential, which corresponds to the known theoretical conception. Based on this statement, an estimation of the average noise power induced by the SpBS wave is given. This noise power equals the square of the average power of the SpBS Stokes wave, which in turn is approximately 18 dB lower than the Rayleigh backscattering power. The noise composition in DAS is determined for two configurations, the first for the initial backscattering spectrum and the second for the spectrum in which the SpBS Stokes and anti-Stokes waves are rejected. It is established that in the analyzed particular case, the SpBS noise power is dominant and exceeds the powers of the thermal, shot, and phase noises in DAS. Accordingly, by rejecting the SpBS waves at the photodetector input, it is possible to reduce the noise power in DAS. In our case, this rejection is carried out by an asymmetric Mach-Zehnder interferometer (MZI). The rejection of the SpBS wave is most relevant for broadband photodetectors, which are associated with the use of short probing pulses to achieve short gauge lengths in DAS.


Asunto(s)
Fertilización , Frecuencia Cardíaca , Funciones de Verosimilitud
4.
Sensors (Basel) ; 22(3)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35161872

RESUMEN

Accurate and fast identification of vibration signals detected based on the phase-sensitive optical time-domain reflectometer (Φ-OTDR) is crucial in reducing the false-alarm rate of the long-distance distributed vibration warning system. This study proposes a computer vision-based Φ-OTDR multi-vibration events detection method in real-time, which can effectively detect perimeter intrusion events and reduce personnel patrol costs. Pulse accumulation, pulse cancellers, median filter, and pseudo-color processing are employed for vibration signal feature enhancement to generate vibration spatio-temporal images and form a customized dataset. This dataset is used to train and evaluate an improved YOLO-A30 based on the YOLO target detection meta-architecture to improve system performance. Experiments show that using this method to process 8069 vibration data images generated from 5 abnormal vibration activities for two types of fiber optic laying scenarios, buried underground or hung on razor barbed wire at the perimeter of high-speed rail, the system mAP@.5 is 99.5%, 555 frames per second (FPS), and can detect a theoretical maximum distance of 135.1 km per second. It can quickly and effectively identify abnormal vibration activities, reduce the false-alarm rate of the system for long-distance multi-vibration along high-speed rail lines, and significantly reduce the computational cost while maintaining accuracy.


Asunto(s)
Tecnología de Fibra Óptica , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA