Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18158, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39103454

RESUMEN

Nonlinear optics (NLO) and its applications have attracted increasing research interest in recent years owing to their contribution to the development of photonic technology. Accordingly, in this study, we investigated the NLO response of pumpkin seed oil using the spatial self-phase modulation (SSPM) method. Significant NLO characteristics have been experimentally studied at 405 nm and 532 nm continuous wave (CW) laser wavelengths, yielding second-order nonlinear refractive index ( n 2 , t h ) values of 6.54 × 10 - 5 cm 2 / W and 2.73 × 10 - 5 cm 2 / W , respectively. The findings suggest that the absorption of the material leads to higher optical nonlinearity at shorter wavelengths owing to higher thermal effects. Furthermore, we implemented a light-controlled-light system based on the spatial cross-phase modulation (SXPM) technique employing pumpkin seed oil. We successfully achieved all-optical switching by designing the 'ON' and 'OFF' modes. The results of this study can be considered for the future development of NLO applications. Moreover, our work investigates the potential of pumpkin seed oil for designing low-cost and high-efficiency NLO devices, and this contribution opens up a novel practical avenue for oil-based optical devices.

2.
Micromachines (Basel) ; 15(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39203593

RESUMEN

We are developing a phase-modulating micro mirror-array spatial light modulator to be used for real holography within the EU-funded project REALHOLO, featuring millions of pixels that can be individually positioned in a piston mode at a large frame rate. We found earlier that an electrostatic comb-drive array offers the best performance for the actuators: sufficient yoke forces for fast switching even at low voltages compatible with the CMOS addressing backplane. In our first design, the well-known electrostatic cross-talk issue had already been much smaller than would have been possible for parallel-plate actuators, but it was still larger than the precision requirements for high-image-quality holography. In this paper, we report on our analysis of the crucial regions for the electrostatic cross-talk and ways to reduce it while observing manufacturing constraints as well as avoiding excessively high field strengths that might lead to electrical breakdown. Finally, we present a solution that, in FEM simulations, reduces the remaining cross-talk to well below the required specification limit. This solution can be manufactured without any additional processing steps and suffers only a very small reduction of the yoke forces.

3.
Sci Rep ; 14(1): 17253, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39060358

RESUMEN

As we know, valley-Hall kink states or pseudospin helical edge states are excited by polarized-momentum-locking [left-handed circular polarization (LCP) and right-handed circular polarization (RCP)] because the valley-Hall kink modes or pseudospin polarized modes have intrinsic and local chirality, which is difficult for these states to achieve phase modulation. Here we theoretically design and study a compatible topological photonic system with coexistence of photonic quantum Hall phase and pseudospin Hall phase, which is composed of gyromagnetic photonic crystals with a deformed honeycomb lattice containing six cylinders. A typical kind of hybrid topological waveguide states with pseudospin-characteristic, magnetic field-dependent, and strong robustness against backscattering and perfect electric conductor (PEC) is realized in the present system. Furthermore, we re-design a structure with intersection-liked, achieve splitting for one-way pseudospin quantum Hall edge states by using phase modulation. Robustness of the one-way pseudospin-quantum Hall edge states in splitting has been demonstrated as well. Additionally, PEC inserted in transport channel brings optical path difference in waveguide transmission, which would influence splitting for hybrid topological waveguide states in phase difference modulation. This work not only provides a new way for manipulation (i.e., phase modulation) of hybrid topological waveguide states in compatible topological photonic system from distinct topological classes but also has potential in various applications, such as sensing, signal processing, and on-chip communications.

4.
Adv Mater ; 36(28): e2401738, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38771624

RESUMEN

Metasurface holograms represent a common category of metasurface devices that utilize in-plane phase gradients to shape wavefronts, forming holographic images through the application of the generalized Snell's law (GSL). While conventional metasurfaces focus solely on phase gradients, metagratings, which incorporate higher-order wave diffraction, further expand the GSL's generality. Recent advances in certain acoustic metagratings demonstrate an updated GSL extension capable of reversing anomalous transmission and reflection, whose reversal is characterized by the parity of the number of wave propagation trips through the metagrating. However, the current extension of GSL remains limited to 1D metagratings, unable to access 2D holographic images in 3D spaces. Here, the GSL extension to 2D metagratings for manipulating waves within 3D spaces is investigated. Through this analysis, a series of acoustic metagrating holograms is experimentally demonstrated. These holographic images exhibit the unique ability to switch between transmission and reflection types independently. This study introduces an additional dimension to modern holography design and metasurface wavefront manipulation.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38652581

RESUMEN

The bromide-chloride mixed quasi-two-dimensional (2D) perovskite, with a natural quantum well structure and tunable exciton binding energy, has gained significant attention for high-performance blue perovskite light-emitting diodes (PeLEDs). However, the relative importance of having a low trap state density or efficient exciton transfer for high-efficiency electroluminescence (EL) performance remains elusive. Here, two molecules with the benzoic acid group, sodium 4-fluorobenzoate (SFB) and 3,5-dibromobenzoic acid (DBA), are used to modulate the phase distribution and trap state to explore the effect between energy transfer and defect passivation. As a result, when the n = 1 phase is inhibited in both films, the DBA@SFB-modified perovskite films achieve a higher photoluminescence quantum yield (PLQY) than the SFB-modified perovskite films due to effective defect passivation. However, DBA@SFB-modified PeLEDs exhibit lower external quantum efficiency (EQE) compared to SFB-modified PeLEDs due to the poor exciton transfer between the low-dimensional phase. This demonstrates that passivation strategies may enhance photoluminescence through reducing nonradiative recombination, but the effect of phase distribution is pivotal for EL performance by efficient energy transfer in quasi-2D perovskites. Femtosecond time-resolved transient absorption measurements confirm the fastest carrier dynamics in SFB-modified perovskite films, further corroborating the above result. This work provides useful information about phase modulation and defect passivation for high-efficiency blue quasi-2D PeLEDs.

6.
Ultrasonics ; 140: 107303, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537518

RESUMEN

A new method for manipulating fluid movement using sound waves is presented in this paper. The method relies on acoustic streaming near the free surface of the fluid in a channel with an open top. The sound waves are modulated in phase using acoustic phase holography, which creates a periodic phase pattern from 0 to 2π along a straight path on a target plane. The paper also describes an experimental design to study the main factors influencing the method, such as frequency, number of phase patterns in the path, and sound pressure amplitude. The paper shows that phase pitch and voltage significantly affects fluid speed and that there is a good match between the theoretical and experimental results. Furthermore, the article reports additional experiments with different channel shapes to demonstrate the versatility of the method in controlling fluid motion. The highest fluid speed observed was 0.4 mm/s at a frequency of 1300 kHz and a phase pitch of 5. The paper also investigates the effect of changing the frequency on reversing the flow direction in a U-shaped channel, both experimentally and theoretically. The paper concludes that this method could be a suitable alternative to other acoustic devices for inducing fluid motion because of its simple and flexible design, fabrication, accuracy, and ability to handle complex channels.

7.
Nano Lett ; 24(9): 2846-2852, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38391130

RESUMEN

Detecting nuclear spins using single nitrogen-vacancy (NV) centers is of particular importance in nanoscale science and engineering but often suffers from the heating effect of microwave fields for spin manipulation, especially under high magnetic fields. Here, we realize an energy-efficient nanoscale nuclear-spin detection using a phase-modulation electron-nuclear double resonance scheme. The microwave field can be reduced to 1/250 of the previous requirements, and the corresponding power is over four orders lower. Meanwhile, the microwave-induced broadening to the line-width of the spectroscopy is significantly canceled, and we achieve a nuclear-spin spectrum with a resolution down to 2.1 kHz under a magnetic field at 1840 Gs. The spectral resolution can be further improved by upgrading the experimental control precision. This scheme can also be used in sensing microwave fields and can be extended to a wide range of applications in the future.

8.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38257627

RESUMEN

Wireless sensor network (WSN) underpinning the smart-grid Internet of Things (SG-IoT) has been a popular research topic in recent years due to its great potential for enabling a wide range of important applications. However, the energy consumption (EC) characteristic of sensor nodes is a key factor that affects the operational performance (e.g., lifetime of sensors) and the total cost of ownership of WSNs. In this paper, to find the modulation techniques suitable for WSNs, we investigate the EC characteristic of continuous phase modulation (CPM), which is an attractive modulation scheme candidate for WSNs because of its constant envelope property. We first develop an EC model for the sensor nodes of WSNs by considering the circuits and a typical communication protocol that relies on automatic repeat request (ARQ)-based retransmissions to ensure successful data delivery. Then, we use this model to analyze the EC characteristic of CPM under various configurations of modulation parameters. Furthermore, we compare the EC characteristic of CPM with that of other representative modulation schemes, such as offset quadrature phase-shift keying (OQPSK) and quadrature amplitude modulation (QAM), which are commonly used in communication protocols of WSNs. Our analysis and simulation results provide insights into the EC characteristics of multiple modulation schemes in the context of WSNs; thus, they are beneficial for designing energy-efficient SG-IoT in the beyond-5G (B5G) and the 6G era.

9.
Small ; 20(16): e2307483, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38150612

RESUMEN

The key to design an advanced oxygen reduction reaction (ORR) electrocatalyst is a well-balance between the adsorption and desorption of oxygen intermediates. This study systematically evaluated the ORR activity of HCP and FCC cobalt core-shell cobalt/N-doped carbon (Cobalt@NC) catalyst via theoretical and experimental studies. The electronic structure calculations using density functional theory (DFT) calculations revealed that the ORR activity of carbon layer can be improved by 1) switching the electrostatic potential in the electrical double layer due to the polarization induced at the carbon-cobalt interface and 2) modulating the electron population in the bonding orbital in the C-O bonds in an ORR. The results revealed that an O atom is bounded stronger to the outer NC shell with FCC Cobalt than HCP Cobalt, which hindered the desorption steps of OH*. Experimentally, plasma-engineered HCP Cobalt@NC also showed remarkably advanced performance toward ORR compared to that FCC Cobalt@NC. The kinetic current density of HCP Cobalt@NC at 0.85 V versus RHE is calculated as 6.24 mA cm-2, which is six folds higher than FCC Cobalt@NC and even outperform 20 wt.% Pt/C. In a practical Aluminium-air battery, HCP Cobalt@NC also exhibited slightly higher peak power density (110.57 mW cm-2) compared to 20 wt.% Pt/C.

10.
Nano Lett ; 23(23): 11051-11056, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38088140

RESUMEN

Terahertz (THz) field enhancement has significant applications in high-resolution imaging, next-generation wireless communications, and networking. In this work, we experimentally demonstrate a graphene metasurface for THz field enhancement that is based on the intervalley scattering theory. Each meta-atom of the metasurface is composed of one split-ring resonator (SRR) embedded in one graphene patch. The experimental results show that, by electrically adjusting the conductivity of the graphene patch, the THz field through the entire sample is enhanced by 23 times and the transmission amplitude at 0.47 THz decreases 8.4 dB. Moreover, the maximum phase difference at 0.43 THz reaches 88°. The experiment shows good agreement with simulation. This study paves a way for exploring THz-matter interactions and nonlinear optics.

11.
Small ; : e2308357, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38050942

RESUMEN

2D layered magnets, such as iron chalcogenides, have emerged these years as a new family of unconventional superconductors and provided the key insights to understand the phonon-electron interaction and pairing mechanism. Their mechanical properties are of strategic importance for the potential applications in spintronics and optoelectronics. However, there is still a lack of efficient approach to tune the elastic modulus despite the extensive studies. Herein, the modulated elastic modulus of 2D magnetic FeTe and its thickness-dependence is reported via phase engineering. The grown 2D FeTe by chemical vapor deposition can present various polymorphs, that is tetragonal FeTe (t-FeTe, antiferromagnetic) and hexagonal FeTe (h-FeTe, ferromagnetic). The measured Young's modulus of t-FeTe by nanoindentation method shows an obvious thickness-dependence, from 290.9 ± 9.2 to 113.0 ± 8.7 GPa when the thicknesses increased from 13.2 to 42.5 nm, respectively. In comparison, the elastic modulus of h-FeTe remains unchanged. These results can shed light on the efficient modulation of mechanical properties of 2D magnetic materials and pave the avenues for their practical applications in nanodevices.

12.
Brain Stimul ; 16(6): 1646-1652, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37949295

RESUMEN

BACKGROUND: Studies using transcranial alternating current stimulation (tACS), a type of non-invasive brain stimulation, have demonstrated a relationship between the positive versus negative phase of both alpha and delta/theta oscillations with variable near-threshold auditory perception. These findings have not been directly compared before. Furthermore, as perception was better in the positive versus negative phase of two different frequencies, it is unclear whether changes in polarity (independent of a specific frequency) could also modulate auditory perception. OBJECTIVE: We investigated whether auditory perception depends on the phase of alpha, delta/theta, or polarity alone. METHODS: We stimulated participants with alpha, delta, and positive and negative direct current (DC) over temporal and central scalp sites while they identified near-threshold tones-in-noise. A Sham condition without tACS served as a control condition. A repeated-measures analysis of variance was used to assess differences in proportions of hits between conditions and polarities. Permutation-based circular-logistic regressions were used to assess the relationship between circular-predictors and single-trial behavioral responses. An exploratory analysis compared the full circular-logistic regression model to the intercept-only model. RESULTS: Overall, there were a greater proportion of hits in the Alpha condition in comparison to Delta, DC, and Sham conditions. We also found an interaction between polarity and stimulation condition; post-hoc analyses revealed a greater proportion of hits in the positive versus negative phase of Alpha tACS. In contrast, no significant differences were found in the Delta, DC, or Sham conditions. The permutation-based circular-logistic regressions did not reveal a statistically significant difference between the obtained RMS of the sine and cosine coefficients and the mean of the surrogate distribution for any of the conditions. However, our exploratory analysis revealed that circular-predictors explained the behavioral data significantly better than an intercept-only model for the Alpha condition, and not the other three conditions. CONCLUSION: These findings suggest that alpha tACS, and not delta nor polarity alone, modulates auditory perception.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Percepción Auditiva/fisiología
13.
Micromachines (Basel) ; 14(10)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37893364

RESUMEN

Phase-modulated (PM) spectral failsafe systems are necessary to promptly terminate amplification processes following accidental seeding of a high-power laser chain with a non-PM pulse to prevent optical damage. In this work, we present a reliable spectral failsafe system that can indicate the presence or absence of sufficient PM light. This requirement is met by combining dual temperature-sensitive fiber Bragg gratings detection with high-speed RF amplitude comparisons. The failsafe trigger signal is generated when the spectral power at the peak sideband exceeds that at the center. The spectral failsafe system has the ability to distinguish between adequate and inadequate PM pulses, and it exhibits significant robustness in pulse width, TEC temperature drift, and DFB wavelength drift in experiments, making it valuable for safe high-power laser operations and providing a useful reference for other detection system designs.

14.
ACS Appl Mater Interfaces ; 15(34): 41141-41150, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37606065

RESUMEN

Efficient and dynamic light manipulation at small scale is highly desirable for many photonics applications. Active optical metasurfaces represent a useful way of achieving this due to their creative design potential, compact footprint, and low power consumption, paving the way toward the realization of chip-scale photonic devices with tunable optical functionality on demand. Here, we demonstrate a dynamically tunable, dual-function metasurface based on dielectric resonances in vanadium dioxide that is capable of independent active amplitude and phase control without the use of mechanical parts. Significant developments in the nanofabrication of vanadium dioxide have been shown to enable this metasurface. Gradual thermal control of the metasurface yields a computationally predicted continuously tuned amplitude modulation of 19 dB with negligible phase modulation and a continuously tuned phase modulation of 228° with negligible amplitude modulation, both at near-infrared wavelengths. Experimentally, a maximum continuously tuned amplitude modulation of 9.6 dB and phase modulation of 120° are shown, along with demonstration of stable intermediate states and repeated modulation without degradation. Reprogrammable optical functionality can thus be achieved in precisely engineered nanoantenna arrays for adaptive modulation of amplitude and phase of light for applications such as tunable holograms, lenses, and beam deflectors.

15.
Chemphyschem ; 24(16): e202300141, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37309720

RESUMEN

Additional phase modulation (APM) is proposed to generally enhance the theoretical efficiency of homonuclear double-quantum (DQ) recoupling in solid-state NMR. APM applies an additional phase list to DQ recoupling in steps of an entire block. The sine-based phase list can enhance the theoretical efficiency by 15-30 %, from 0.52 to 0.68 (non-γ-encoded recoupling) or from 0.73 to 0.84 (γ-encoded recoupling), with doubled recoupling time. The genetic-algorithm (GA) optimized APM can adiabatically enhance the efficiency to ∼1.0 at longer times. The concept of APM has been tested on SPR-51 , BaBa, and SPR-31 , which represent γ-encoded recoupling, non-γ-encoded recoupling, and another kind beyond the former two, respectively. Simulations reveal that enhancements from APM are due to the activation of more crystallites in the powder. Experiments on 2,3-13 C labeled alanine are used to validate the APM recoupling. This new concept shall shed light on developing more efficient homonuclear recoupling methods.

16.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(3): 409-417, 2023 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-37380378

RESUMEN

High-frequency steady-state asymmetric visual evoked potential (SSaVEP) provides a new paradigm for designing comfortable and practical brain-computer interface (BCI) systems. However, due to the weak amplitude and strong noise of high-frequency signals, it is of great significance to study how to enhance their signal features. In this study, a 30 Hz high-frequency visual stimulus was used, and the peripheral visual field was equally divided into eight annular sectors. Eight kinds of annular sector pairs were selected based on the mapping relationship of visual space onto the primary visual cortex (V1), and three phases (in-phase[0º, 0º], anti-phase [0º, 180º], and anti-phase [180º, 0º]) were designed for each annular sector pair to explore response intensity and signal-to-noise ratio under phase modulation. A total of 8 healthy subjects were recruited in the experiment. The results showed that three annular sector pairs exhibited significant differences in SSaVEP features under phase modulation at 30 Hz high-frequency stimulation. And the spatial feature analysis showed that the two types of features of the annular sector pair in the lower visual field were significantly higher than those in the upper visual field. This study further used the filter bank and ensemble task-related component analysis to calculate the classification accuracy of annular sector pairs under three-phase modulations, and the average accuracy was up to 91.5%, which proved that the phase-modulated SSaVEP features could be used to encode high- frequency SSaVEP. In summary, the results of this study provide new ideas for enhancing the features of high-frequency SSaVEP signals and expanding the instruction set of the traditional steady state visual evoked potential paradigm.


Asunto(s)
Interfaces Cerebro-Computador , Potenciales Evocados Visuales , Humanos , Voluntarios Sanos , Relación Señal-Ruido
17.
J Magn Reson ; 353: 107501, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37343392

RESUMEN

This paper presents an improved iterative algorithm (TOPS-2) for the design of broadband inversion, excitation and coherent transfer mixing sequence (TOCSY) pulses. The evolution of the Bloch vector is presented as a sequence of small constant flip angle pulses with varying phases and constant amplitude. This paper describes an improved algorithm for iterative optimization of piece-wise constant phases as we incorporate the quadratic terms in the propagators. In our iterative optimization we obtain a closed-form expression for each phase, and these phases are optimized sequentially using the new improved algorithm. This paper compares the simulation results of the TOPS vs TOPS-2 and shows that TOPS-2 perform better. Experimental validation of excitation and inversion TOPS-2 pulse sequence is performed with .5% H2O in 99.5% D2O, and experimental validation of TOPS-2 mixing (TOCSY) pulse sequence is done with 0.1% of Ethylbenzene (EB) in CDCl3 solvent.

18.
Ultrasonics ; 134: 107074, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37329671

RESUMEN

Acoustic holograms have been used widely to generate desired acoustic fields. Following the rapid development of 3D printing technology, the use of holographic lenses has become an efficient method to produce acoustic fields with high resolution and low cost. In this paper, we demonstrate a technique to modulate the amplitude and phase of ultrasonic waves simultaneously using a holographic method with high transmission efficiency and high accuracy. On this basis, we generate an Airy beam with high propagation invariance. We then discuss the advantages and disadvantages of the proposed method when compared with the conventional acoustic holographic method. Finally, we design a sinusoidal curve with a phase gradient and a constant pressure amplitude and realize transport of a particle on a water surface along a curve.

19.
Nano Converg ; 10(1): 24, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37222959

RESUMEN

Metasurfaces can modulate light with periodically arranged subwavelength scatterers, and they can generate arbitrary wavefronts. Therefore, they can be used to realize various optical components. In particular, metasurfaces can be used to realize lenses, so-called metalenses. In the last decade, metalenses have been actively studied and developed. In this review, we firstly introduce the fundamental principles of metalenses in terms of materials, phase modulation method, and design method. Based on these principles, the functionalities and the applications can consequently be realized. Metalenses have a much larger number of degrees of freedom compared with that of existing refractive or diffractive lenses. Thus, they afford functionalities such as tunability, high numerical aperture, and aberration correction. Metalenses with these functionalities can be applied in various optical systems such as imaging systems and spectrometers. Finally, we discuss the future applications of metalenses.

20.
Cell Syst ; 14(5): 382-391.e5, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37201507

RESUMEN

Control of dynamical processes is vital for maintaining correct cell regulation and cell-fate decisions. Numerous regulatory networks show oscillatory behavior; however, our knowledge of how one oscillator behaves when stimulated by two or more external oscillatory signals is still missing. We explore this problem by constructing a synthetic oscillatory system in yeast and stimulate it with two external oscillatory signals. Letting model verification and prediction operate in a tight interplay with experimental observations, we find that stimulation with two external signals expands the plateau of entrainment and reduces the fluctuations of oscillations. Furthermore, by adjusting the phase differences of external signals, one can control the amplitude of oscillations, which is understood through the signal delay of the unperturbed oscillatory network. With this we reveal a direct amplitude dependency of downstream gene transcription. Taken together, these results suggest a new path to control oscillatory systems by coupled oscillator cooperativity.


Asunto(s)
Ciclo Celular , Diferenciación Celular , Fenómenos Cronobiológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA