Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Int Immunopharmacol ; 142(Pt A): 113058, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39236455

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune inflammatory disease that affects multiple organs and systems in the human body, often leading to disability. Its pathogenesis is complex, and the long-term use of traditional anti-rheumatic drugs frequently results in severe toxic side effects. Therefore, the search for a safer and more effective antirheumatic drug is extremely important for the treatment of RA. As important immune cells in the body, macrophages are polarized. Under pathological conditions, macrophages undergo proliferation and are recruited to diseased tissues upon stimulation. In the local microenvironment, they polarize into different types of macrophages in response to specific factors and perform unique functions and roles. Previous studies have shown that there is a link between macrophage polarization and RA, indicating that certain active ingredients can ameliorate RA symptoms through macrophage polarization. Notably, Traditional Chinese medicine (TCM) monomer component and compounds demonstrate a particular advantage in this process. Building upon this insight, we reviewed and analyzed recent studies to offer valuable and meaningful insights and directions for the development and application of anti-rheumatic drugs.

2.
Nat Prod Res ; : 1-9, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105448

RESUMEN

To reveal the potential mechanism of the effect of Chinese Herbal Medicine Fuzi on Aplastic anaemia (AA) according to the network pharmacology approach and molecular docking. According to Ultra High Performance Liquid Chromatography Mass Spectrometry (UHPLC-MS/MS), 146 chemical ingredients of Fuzi were obtained. By SwissADME online system analysis, a total of 55 compounds such as Magnoflorine, Scutellarein, Luteolin and Gingerol may be the main active components of Fuzi and 145 common targets related to AA were predicted. 17 targets such as MAPK1, AKT1 and GRB2 were considered as hub targets. KEGG and GO enrichment analysis obtained 122 signalling pathways and 950 remarkable results. These results suggested that Fuzi exerted pharmacological effects on AA mainly by regulating PI3K-Akt, MAPK and JAK-STAT signalling pathways and epithelial cell proliferation, cell differentiation, regulate energy production and other biological processes. Meanwhile, molecular docking results showed that the hub targets had good binding ability with the main active ingredients.

3.
Phytother Res ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120443

RESUMEN

Polysaccharides are one of the most important components of traditional Chinese medicine (TCM) and have been extensively studied for their immunomodulatory properties. The functions and effects of TCM polysaccharides are closely related to the gut microbiota, making the study of their interaction a hot topic in the field of TCM metabolism. This review follows two main inquiries: first, how the gut microbiota breaks down TCM polysaccharides to produce bioactive metabolites; and second, how TCM polysaccharides reshape the gut microbiota as a carbon source. Understanding the interaction mechanism involves a challenging equation of the structural association of TCM polysaccharides with the metabolic activities of the microbiota. This review has meticulously searched, partially organized literature spanning the past decade, that delves into the interaction mechanism between TCM polysaccharides and gut microbiota. It also gives an overview of the complex factors of the elusive "polysaccharides-bond-bacteria-enzyme" equation: the complexity of polysaccharide structures, the diversity of glycosidic bond types, the communal nature of metabolizing microbiota, the enzymes involved in functional degradation by microbiota, and the hierarchical roles of polysaccharide utilization locus and gram-positive PULs. Finally, this review aims to facilitate discussion among peers in the field of TCM microbiota and offers prospects for research in related fields, paving the way for pharmacological studies on TCM polysaccharides and gut microbiota therapeutics, and providing a reference point for further clinical research.

4.
Heliyon ; 10(15): e34970, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39157399

RESUMEN

Depression is a common psychiatric disorder that belongs to the category of "Depression Syndrome" in traditional Chinese medicine (TCM), and its etiology and pathogenesis are complex and unclear. It is characterized by high prevalence, high disability rate, and high recurrence rate, which seriously affect human health, and its treatment has become a research hotspot worldwide. At present, the antidepressants commonly used in the clinic are mainly Western medicine (WM), but there are problems such as frequent side effects and poor efficacy. Studies have found that the use of TCM prescriptions in the treatment of depression can achieve the same effect as WM; and when TCM prescriptions are combined with WM, the efficacy can be enhanced while the adverse effects of WM can be reduced. Pharmacological studies related to the treatment of depression with traditional Chinese medicine prescriptions (TCMPs) have focused on the neurobiochemical system, gut microbes, and energy metabolism in mitochondria. No one has yet reviewed the pharmacological mechanism of TCMPs for depression. So, this paper reviews the pharmacological mechanism of TCMPs for depression from the perspective of TCMPs, introduces the progress of research on classical TCMPs for depression and their antidepressant mechanism. This article aims to promote the application of TCMPs in the clinic and provide a new therapeutic idea for the clinical treatment of depression.

5.
Front Pharmacol ; 15: 1442181, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139645

RESUMEN

Fibrosis is a public health issue of great concern characterized by the excessive deposition of extracellular matrix, leading to the destruction of parenchymal tissue and organ dysfunction that places a heavy burden on the global healthcare system due to its high incidence, disability, and mortality. Salvianolic acid B (SalB) has positively affected various human diseases, including fibrosis. In this review, we concentrate on the anti-fibrotic effects of SalB from a molecular perspective while providing information on the safety, adverse effects, and drug interactions of SalB. Additionally, we discuss the innovative SalB formulations, which give some references for further investigation and therapeutic use of SalB's anti-fibrotic qualities. Even with the encouraging preclinical data, additional research is required before relevant clinical trials can be conducted. Therefore, we conclude with recommendations for future studies. It is hoped that this review will provide comprehensive new perspectives on future research and product development related to SalB treatment of fibrosis and promote the efficient development of this field.

6.
Chin Med ; 19(1): 105, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123236

RESUMEN

BACKGROUND: Acute gouty arthritis (AGA) is classified as 'arthritis' in traditional Chinese medicine (TCM) theory. Shirebi granules (SGs), derived from the classic prescription SiMiaoWan, exerts satisfying therapeutic efficacy in ameliorating AGA clinically. However, the underlying mechanisms of SGs against AGA remain unclarified. METHODS: AGA-related biological processes, signal pathways and biomarker genes were mined from the GEO database through bioinformatics. SGs components were systematically recognized using the UPLC-Q-TOF-MS/MS. A correlation network was established based on the biomarker genes and the chemical components, from which the signal pathway used for further study was selected. Finally, we established an AGA model using SD rats injected with monosodium urate (MSU) in the ankle joint for experimental validation. A combination of behavioral tests, H&E, safranin O- fast green, western blotting, and immunofluorescence were employed to reveal the mechanism of action of SGs on AGA. RESULTS: The deterioration of AGA was significantly related to the imbalance between immunity and inflammation, neutrophil chemotaxis and inflammatory factor activation. HDAC5, PRKCB, NFκB1, MPO, PRKCA, PIK3CA were identified to be the candidate targets of SGs against AGA, associated with neutrophil extracellular traps (NETs) signal pathway. Animal experiments demonstrated that SGs effectively repaired cartilage damage, blocked TLR4 activation, and inhibited the expression of NETs indicators and inflammatory factors. In addition, SGs prominently alleviated joint redness and swelling, improved joint dysfunction, inhibited inflammatory infiltration of AGA rats. CONCLUSION: Our data reveal that SGs may effectively alleviate the disease severity of AGA by suppressing NETs-promoted imbalance between immunity and inflammation.

7.
Phytother Res ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148368

RESUMEN

Central nervous system (CNS)-related diseases have a high mortality rate, are a serious threat to physical and mental health, and have always been an important area of research. Gastrodin, the main active metabolite of Gastrodia elata Blume, used in Chinese medicine and food, has a wide range of pharmacological effects, mostly related to CNS disorders. This review aims to systematically summarize and discuss the effects and underlying mechanisms of gastrodin in the treatment of CNS diseases, and to assess its potential for further development as a lead drug in both biomedicine and traditional Chinese medicine. Studies on the pharmacological effects of gastrodin on the CNS indicate that it may exert anti-neurodegenerative, cerebrovascular protective, and ameliorative effects on diabetic encephalopathy, perioperative neurocognitive dysfunction, epilepsy, Tourette's syndrome, depression and anxiety, and sleep disorders through various mechanisms. To date, 110 gastrodin products have been approved for clinical use, but further multicenter clinical case-control studies are relatively scarce. Preclinical studies have confirmed that gastrodin can be used to treat CNS-related disorders. However, important concerns need to be addressed in the context of likely non-specific, assay interfering effects when gastrodin is studied using in vitro and in silico approaches, calling for a systematic assessment of the evidence to date. High-quality clinical trials should have priority to evaluate the therapeutic safety and clinical efficacy of gastrodin. Further experimental research using appropriate in vivo models is also needed, focusing on neurodegenerative diseases, cerebral ischemic and hypoxic diseases, brain damage caused by methamphetamine or heavy metals, and epilepsy.

8.
Front Pharmacol ; 15: 1411566, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948464

RESUMEN

Background: Inflammatory bowel disease (IBD) is a chronic condition that can be managed with treatment, but it is challenging to get IBD cured. Resveratrol, a non-flavonoid polyphenolic organic compound derived from various plants, has a potential effect on IBD. The current research was set out to investigate the therapeutic effects of resveratrol on animal models of IBD. Methods: A comprehensive search of PubMed, Embase, Web of Science, and Chinese databases was performed. The literature search process was completed independently by two people and reviewed by a third person. The risk of bias in the included literature was assessed using the Collaborative Approach to Meta Analysis and Review of Animal Data from Experimental Stroke (CAMARADES) 10-point quality checklist. The meta-analysis utilized Review Manager 5.4 software to evaluate the efficacy of resveratrol, with histopathological index as the primary outcome measure. Subgroup analysis was conducted based on this indicator. Additionally, meta-analyses were carried out on different outcomes reported in the literature, including final disease activity index, final body weight change, colon length, splenic index, and inflammatory factors. Results: After conducting a thorough literature search and selection process, a total of 28 studies were ultimately included in the analysis. It was found that over half of the selected studies had more than five items with low risk of bias in the bias risk assessment. Relevant datas from included literature indicated that the histopathological index of the resveratrol group was significantly lower than that of the control group (WMD = -2.58 [-3.29, -1.87]). Subgroup analysis revealed that higher doses of resveratrol (>80 mg/kg) had a better efficacy (WMD = -3.47 [-4.97, -1.98]). Furthermore, The data summary and quantitative analysis results of SI and colon length also showed that resveratrol was effective in alleviating intestinal mucosal pathological injury of IBD. In terms of biochemical indicators, the summary analysis revealed that resveratrol affected interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), transforming growth factor-ß (TGF-ß), interferon-γ (IFN-γ), malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), and prostaglandin E2 (PGE2) significantly. These effects may be attributed to the mechanism of resveratrol in regulating immune response and inhibiting oxidative stress. Conclusion: This review suggests that resveratrol demonstrated a notable therapeutic impact in preclinical models of IBD, particularly at doses exceeding 80 mg/kg. This efficacy is attributed to the protective mechanisms targeting the intestinal mucosa involved in the pathogenesis of IBD through various pathways. As a result, resveratrol holds promising prospects for potential clinical use in the future.

9.
Front Oncol ; 14: 1445222, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081717

RESUMEN

Hepatocellular carcinoma is one of the common malignant tumors of digestive tract, which seriously threatens the life of patients due to its high incidence rate, strong invasion, metastasis, and prognosis. At present, the main methods for preventing and treating HCC include medication, surgery, and intervention, but patients frequently encounter with specific adverse reactions or side effects. Many Traditional Chinese medicine can improve liver function, reduce liver cancer recurrence and have unique advantages in the treatment of HCC because of their acting mode of multi-target, multi-pathway, multi-component, and multi-level. Sesquiterpenoids, a class of natural products which are widely present in nature and exhibit good anti-tumor activity, and many of them possess good potential for the treatment of HCC. This article reviewed the anti-tumor activities, natural resources, pharmacological mechanism of natural sesquiterpenoids against HCC, providing the theoretical basis for the prevention and treatment of HCC and a comprehensive understanding of their potential for development of new clinical drugs.

10.
Ageing Res Rev ; 99: 102398, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955265

RESUMEN

BACKGROUND: Magnolia officinalis, a traditional herbal medicine widely used in clinical practice, exerts antibacterial, anti-tumor, anti-inflammatory, antioxidant, and anti-aging activities. Neolignans are the main active ingredients of M. officinalis and exert a wide range of pharmacological effects, including anti-Alzheimer's disease (AD) activity. OBJECTIVE: To summarize the published data on the therapeutic effect and mechanism of neolignans on AD in vivo and in vitro. METHODS: PubMed, Web of Science, Google Scholar, and Scopus were systematically reviewed (up to March 1, 2024) for pre-clinical studies. RESULTS: M. officinalis-derived neolignans (honokiol, magnolol, 4-O-methylhonokiol, and obovatol) alleviated behavioral abnormalities, including learning and cognitive impairments, in AD animal models. Mechanistically, neolignans inhibited Aß generation or aggregation, neuroinflammation, and acetylcholinesterase activity; promoted microglial phagocytosis and anti-oxidative stress; alleviated mitochondrial dysfunction and energy metabolism, as well as anti-cholinergic deficiency; and regulated intestinal flora. Furthermore, neolignans may achieve neuroprotection by regulating different molecular pathways, including the NF-κB, ERK, AMPK/mTOR/ULK1, and cAMP/PKA/CREB pathways. CONCLUSIONS: Neolignans exert anti-AD effects through multiple mechanisms and pathways. However, the exact targets, pharmacokinetics, safety, and clinical efficacy in patients with AD need further investigation in multi-center clinical case-control studies.


Asunto(s)
Enfermedad de Alzheimer , Lignanos , Magnolia , Animales , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Lignanos/farmacología , Lignanos/uso terapéutico , Magnolia/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
11.
Front Cardiovasc Med ; 11: 1417672, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39041001

RESUMEN

Matrine (MT) and Oxymatrine (OMT) are two natural alkaloids derived from plants. These bioactive compounds are notable for their diverse pharmacological effects and have been extensively studied and recognized in the treatment of cardiovascular diseases in recent years. The cardioprotective effects of MT and OMT involve multiple aspects, primarily including antioxidative stress, anti-inflammatory actions, anti-atherosclerosis, restoration of vascular function, and inhibition of cardiac remodeling and failure. Clinical pharmacology research has identified numerous novel molecular mechanisms of OMT and MT, such as JAK/STAT, Nrf2/HO-1, PI3 K/AKT, TGF-ß1/Smad, and Notch pathways, providing new evidence supporting their promising therapeutic potential against cardiovascular diseases. Thus, this review aims to investigate the potential applications of MT and OMT in treating cardiovascular diseases, encompassing their mechanisms, efficacy, and safety, confirming their promise as lead compounds in anti-cardiovascular disease drug development.

12.
Biomed Pharmacother ; 177: 117101, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002442

RESUMEN

Puerarin, a monomer of traditional Chinese medicine, is a key component of Pueraria radix. Both clinical and experimental researches demonstrated that puerarin has therapeutic effects on Parkinson's disease (PD). Puerarin's pharmacological mechanisms include: 1) Anti-apoptosis. Puerarin inhibits cell apoptosis through the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (Akt) and c-Jun N-terminal kinase (JNK) signaling pathways. Puerarin also exerts a hormone-like effect against cell apoptosis; 2) Anti-oxidative stress injury. Puerarin inhibits the Nrf2 nuclear exclusion through the GSK-3ß/Fyn pathway to promote the Nrf2 accumulation in the nucleus, and then promotes the antioxidant synthesis through the Nrf2/ARE signaling pathway to protect against oxidative stress; 3) Neuroprotective effects by intervening in the ubiquitin-proteasome system (UPS) and autophagy-lysosomal pathway (ALP). Puerarin significantly enhances the activity of chaperone-mediated autophagy (CMA), which downregulates the expression of α-synuclein, reduces its accumulation, and thus improves the function of damaged neurons. Additionally, puerarin increases proteasome activity and decreases ubiquitin-binding proteins, thereby preventing toxic accumulation of intracellular proteins; 4) Alleviating inflammatory response. Puerarin inhibits the conversion of microglia to the M1 phenotype while inducing the transition of microglia to the M2 phenotype. Furthermore, puerarin promotes the secretion of anti-inflammatory factor and inhibits the expression of pro-inflammatory factors; 5) Increasing the levels of dopamine and its metabolites. Puerarin could increase the levels of dopamine, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the striatum; 6) Promoting neurotrophic factor expression and neuronal repair. Puerarin increases the expression of glial cell-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), thereby exerting a neuroprotective effect. Moreover, the regulation of the gut microbiota by puerarin may be a potential mechanism for the treatment of PD. The current review discusses the molecular mechanisms of puerarin, which may provide insight into the active components of traditional Chinese medicine in the treatment of PD.


Asunto(s)
Isoflavonas , Fármacos Neuroprotectores , Enfermedad de Parkinson , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
13.
Biomed Pharmacother ; 176: 116909, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852513

RESUMEN

Lung cancer is a prevalent malignant tumor and a leading cause of cancer-related fatalities globally. However, current treatments all have limitations. Therefore, there is an urgent need to identify a readily available therapeutic agent to counteract lung cancer development and progression. Luteolin is a flavonoid derived from vegetables and herbs that possesses preventive and therapeutic effects on various cancers. With the goal of providing new directions for the treatment of lung cancer, we review here the recent findings on luteolin so as to provide new ideas for the development of new anti-lung cancer drugs. The search focused on studies published between January 1995 and January 2024 that explored the use of luteolin in lung cancer. A comprehensive literature search was conducted in the SCOPUS, Google Scholar, PubMed, and Web of Science databases using the keywords "luteolin" and "lung cancer." By collecting previous literature, we found that luteolin has multiple mechanisms of therapeutic effects, including promotion of apoptosis in lung cancer cells; inhibition of tumor cell proliferation, invasion and metastasis; and modulation of immune responses. In addition, it can be used as an adjuvant to radio-chemotherapy and helps to ameliorate cancer complications. This review summarizes the structure, natural sources, physicochemical properties and pharmacokinetics of luteolin, and focuses on the anti-lung cancer mechanism of luteolin, so as to provide new ideas for the development of new anti-lung cancer drugs.


Asunto(s)
Neoplasias Pulmonares , Luteolina , Luteolina/farmacología , Luteolina/uso terapéutico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antineoplásicos Fitogénicos/uso terapéutico , Antineoplásicos Fitogénicos/farmacología
14.
Eur J Med Chem ; 275: 116608, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38905805

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by a progressive fibrotic phenotype. Immunohistochemical studies on HDAC6 overexpression in IPF lung tissues confirmed that IPF is associated with aberrant HDAC6 activity. We herein developed a series of novel HDAC6 inhibitors that can be used as potential pharmacological tools for IPF treatment. The best-performing derivative H10 showed good selectivity for multiple isoforms of the HDAC family. The structural analysis and structure-activity relationship studies of H10 will contribute to optimizing the binding mode of the new molecules. The pharmacological mechanism of H10 to inhibit pulmonary fibrosis was validated, and its ability to inhibit the IPF phenotype was also demonstrated. Moreover, H10 showed satisfactory metabolic stability. The efficacy of H10 was also determined in a mouse model of bleomycin-induced pulmonary fibrosis. The results highlighted in this paper may provide a reference for the identification of new drug molecules for the treatment of IPF.


Asunto(s)
Descubrimiento de Drogas , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Fibrosis Pulmonar Idiopática , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/inducido químicamente , Animales , Histona Desacetilasa 6/antagonistas & inhibidores , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/síntesis química , Humanos , Relación Estructura-Actividad , Ratones , Estructura Molecular , Bleomicina , Relación Dosis-Respuesta a Droga , Ratones Endogámicos C57BL , Masculino , Pirroles/química , Pirroles/farmacología , Pirroles/síntesis química
15.
Heliyon ; 10(9): e29976, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38765107

RESUMEN

Sinomenine (SIN), an alkaloid derived from the traditional Chinese medicine, Caulis Sinomenii, has been used as an anti-inflammatory drug in China for over 30 years. With the continuous increase in research on the pharmacological mechanism of SIN, it has been found that, in addition to the typical rheumatoid arthritis (RA) treatment, SIN can be used as a potentially effective therapeutic drug for anti-tumour, anti-renal, and anti-nervous system diseases. By reviewing a large amount of literature and conducting a summary analysis of the literature pertaining to the pharmacological mechanism of SIN, we completed a review that focused on SIN, found that the current research is insufficient, and offered an outlook for future SIN development. We hope that this review will increase the public understanding of the pharmacological mechanisms of SIN, discover SIN research trial shortcomings, and promote the effective treatment of immune diseases, inflammation, and other related diseases.

16.
Biomed Pharmacother ; 175: 116635, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653110

RESUMEN

The morbidity and mortality of malignant tumors are progressively rising on an annual basis. Traditional Chinese Medicine (TCM) holds promise as a possible therapeutic agent for the avoidance or therapy of malignant tumors. Salvia miltiorrhiza Bunge (Danshen), a traditional Asian functional food, has therapeutic characteristics in application for the treatment of malignant tumors. Dihydrotanshinone I (DHTS) is the principal lipophilic phenanthraquinone compound found in Salvia miltiorrhiza Bunge, whose anti-tumor effect has attracted widespread attention. The anti-tumor effects include inhibiting cancer cell proliferation, triggering apoptosis of tumor cells, inducing ferroptosis in tumor cells, inhibiting tumor cell invasion and metastasis, and improving drug resistance of tumor cells. In this paper, we summarized and analyzed the mechanisms and targets of anti-tumor effect of DHTS, providing new ideas and establishing a solid theoretical basis for the future advancement and clinical treatment of DHTS.


Asunto(s)
Neoplasias , Fenantrenos , Quinonas , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fenantrenos/farmacología , Fenantrenos/uso terapéutico , Animales , Quinonas/farmacología , Quinonas/uso terapéutico , Apoptosis/efectos de los fármacos , Antineoplásicos Fitogénicos/uso terapéutico , Antineoplásicos Fitogénicos/farmacología , Proliferación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Salvia miltiorrhiza/química , Resistencia a Antineoplásicos/efectos de los fármacos , Furanos
17.
Biomed Pharmacother ; 173: 116350, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430632

RESUMEN

Diabetic peripheral neuropathy (DPN) is one of the most prevalent consequences of diabetes, with a high incidence and disability rate. The DPN's pathogenesis is extremely complex and yet to be fully understood. Persistent high glucose metabolism, nerve growth factor deficiency, microvascular disease, oxidative stress, peripheral nerve cell apoptosis, immune factors, and other factors have been implicated in the pathogenesis of DPN. Astragalus mongholicus is a commonly used plant used to treat DPN in clinical settings. Its rich chemical components mainly include Astragalus polysaccharide, Astragalus saponins, Astragalus flavones, etc., which play a vital role in the treatment of DPN. This review aimed to summarize the pathogenesis of DPN and the studies on the mechanism of the effective components of Astragalus mongholicus in treating DPN. This is of great significance for the effective use of Chinese herbal medicine and the promotion of its status and influence on the world.


Asunto(s)
Planta del Astrágalo , Diabetes Mellitus , Neuropatías Diabéticas , Medicamentos Herbarios Chinos , Astragalus propinquus , Neuropatías Diabéticas/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
18.
Eur J Med Chem ; 269: 116290, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38518522

RESUMEN

The existing therapies for cancer are not remote satisfactory due to drug-resistance in tumors that are malignant. There is a pressing necessity to take a step forward to develop innovative therapies that can complement current ones. Multiple investigations have demonstrated that ferroptosis therapy, a non-apoptotic modality of programmed cell death, has tremendous potential in face of multiple crucial events, such as drug resistance and toxicity in aggressive malignancies. Recently, ferroptosis at the crosswalk of chemotherapy, materials science, immunotherapy, tumor microenvironment, and bionanotechnology has been presented to elucidate its therapeutic feasibility. Given the burgeoning progression of ferroptosis-based nanomedicine, the newest advancements in this field at the confluence of ferroptosis-inducers, nanotherapeutics, along with tumor microenvironment are given an overview. Here, the signaling pathways of ferroptosis-related were first talked about briefly. The emphasis discussion was placed on the pharmacological mechanisms and the nanodrugs design of ferroptosis inducing agents based on multiple distinct metabolism pathways. Additionally, a comprehensive overview of the action mechanisms by which the tumor microenvironment influences ferroptosis was elaborately descripted. Finally, some limitations of current researches and future research directions were also deliberately discussed to provide details about therapeutic avenues for ferroptosis-related diseases along with the design of anti-drugs.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Microambiente Tumoral , Apoptosis , Inmunoterapia , Nanomedicina , Neoplasias/tratamiento farmacológico
19.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38543095

RESUMEN

This study aimed to explore the mechanisms through which salvianolic acid B (Sal-B) exerts its effects during myocardial ischemia-reperfusion injury (MI/RI), aiming to demonstrate the potential pharmacological characteristics of Sal-B in the management of coronary heart disease. First, Sal-B-related targets and MI/RI-related genes were compiled from public databases. Subsequent functional enrichment analyses using the protein-protein interaction (PPI) network, gene ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) predicted the core targets and approaches by which Sal-B counters MI/RI. Second, a Sal-B-treated MI/RI mouse model and oxygen-glucose deprivation/reoxygenation (OGD/R) H9C2 cell model were selected to verify the main targets of the network pharmacological prediction. An intersectional analysis between Sal-B and MI/RI targets identified 69 common targets, with a PPI network analysis highlighting caspase-3, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38) as central targets. GO and KEGG enrichment analyses indicated remarkable enrichment of the apoptosis pathway among these targets, suggesting their utility in experimental studies in vivo. Experimental results demonstrated that Sal-B treatment not only mitigated myocardial infarction size following MI/RI injury in mice but also modulated the expression of key apoptotic regulators, including Bcl-2-Associated X (Bax), caspase-3, JNK, and p38, alongside enhancing the B-cell lymphoma-2 (Bcl-2) expression, thereby inhibiting myocardial tissue apoptosis. This study leveraged an integrative network pharmacology approach to predict Sal-B's potential targets in MI/RI treatment and verified the involvement of key target proteins within the predicted signaling pathways through both in vivo and in vitro experiments, offering a comprehensive insight into Sal-B's pharmacological mechanism in MI/RI management.

20.
J Ethnopharmacol ; 319(Pt 3): 117354, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38380573

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic nephropathy (DN) is a severe diabetic microvascular complication with an increasing prevalence rate and lack of effective treatment. Traditional Chinese medicine has been proven to have favorable efficacy on DN, especially Salvia miltiorrhiza Bunge (SM), one of the most critical and conventional herbs in the treatment. Over the past decades, studies have demonstrated that SM is a potential treatment for DN, and the exploration of the underlying mechanism has also received much attention. AIM OF THIS REVIEW: This review aims to systematically study the efficacy and pharmacological mechanism of SM in the treatment of DN to understand its therapeutic potential more comprehensively. MATERIALS AND METHODS: Relevant information was sourced from Google Scholar, PubMed, Web of Science, and CNKI databases. RESULTS: Several clinical trials and systematic reviews have indicated that SM has definite benefits on the kidneys of diabetic patients. And many laboratory studies have further revealed that SM and its characteristic extracts, mainly including salvianolic acids and tanshinones, can exhibit pharmacological activity against DN by the regulation of metabolism, renal hemodynamic, oxidative stress, inflammation, fibrosis, autophagy, et cetera, and several involved signaling pathways, thereby preventing various renal cells from abnormal changes in DN, including endothelial cells, podocytes, epithelial cells, and mesangial cells. CONCLUSION: As a potential drug for the treatment of DN, SM has multi-component, multi-target, and multi-pathway pharmacological effects. This work will not only verify the satisfactory curative effect of SM in the treatment of DN but also provide helpful insights for the development of new anti-DN drugs and the application of traditional Chinese medicine.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Salvia miltiorrhiza , Humanos , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Células Endoteliales , Riñón , Medicina Tradicional China , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA