Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
BMC Cancer ; 24(1): 1210, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350200

RESUMEN

BACKGROUND: Fluoropyrimidines are chemotherapy drugs utilized to treat a variety of solid tumors. These drugs predominantly rely on the enzyme dihydropyrimidine dehydrogenase (DPD), which is encoded by the DPYD gene, for their metabolism. Genetic mutations affecting this gene can cause DPYD deficiency, disrupting pyrimidine metabolism and increasing the risk of toxicity in cancer patients treated with 5-fluorouracil. The severity and type of toxic reactions are influenced by genetic and demographic factors and, in certain instances, can result in patient mortality. Among the more than 50 identified variants of DPYD, only a subset has clinical significance, leading to the production of enzymes that are either non-functional or impaired. The study aims to examine treatment-related mortality in cancer patients undergoing fluoropyrimidine chemotherapy, comparing those with and without DPD deficiency. METHODS: The meta-analysis selected and evaluated 9685 studies from Pubmed, Cochrane, Embase and Web of Science databases. Only studies examining the main DPYD variants (DPYD*2A, DPYD p.D949V, DPYD*13 and DPYD HapB3) were included. Statistical Analysis was performed using R, version 4.2.3. Data were examined using the Mantel-Haenszel method and 95% CIs. Heterogeneity was assessed with I2 statistics. RESULTS: There were 36 prospective and retrospective studies included, accounting for 16,005 patients. Most studies assessed colorectal cancer, representing 86.49% of patients. Other gastrointestinal cancers were evaluated by 11 studies, breast cancer by nine studies and head and neck cancers by five studies. Four DPYD variants were identified as predictors of severe fluoropyrimidines toxicity in literature review: DPYD*2A (rs3918290), DPYD p.D949V (rs67376798), DPYD*13 (rs55886062) and DPYD Hap23 (rs56038477). All 36 studies assessed the DPYD*2A variant, while 20 assessed DPYD p.D949V, 7 assessed DPYD*13, and 9 assessed DPYDHap23. Among the 587 patients who tested positive for at least one DPYD variant, 13 died from fluoropyrimidine toxicity. Conversely, in the non-carrier group there were 14 treatment-related deaths. Carriers of DPYD variants was found to be significantly correlated with treatment-related mortality (OR = 34.86, 95% CI 13.96-87.05; p < 0.05). CONCLUSIONS: This study improves our comprehension of how the DPYD gene impacts cancer patients receiving fluoropyrimidine chemotherapy. Identifying mutations associated with dihydropyrimidine dehydrogenase deficiency may help predict the likelihood of serious side effects and fatalities. This knowledge can be applied to adjust medication doses before starting treatment, thus reducing the occurrence of these critical outcomes.


Asunto(s)
Dihidrouracilo Deshidrogenasa (NADP) , Fluorouracilo , Neoplasias , Humanos , Antimetabolitos Antineoplásicos/efectos adversos , Antimetabolitos Antineoplásicos/uso terapéutico , Deficiencia de Dihidropirimidina Deshidrogenasa/genética , Deficiencia de Dihidropirimidina Deshidrogenasa/metabolismo , Dihidrouracilo Deshidrogenasa (NADP)/genética , Dihidrouracilo Deshidrogenasa (NADP)/metabolismo , Fluorouracilo/efectos adversos , Fluorouracilo/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/mortalidad , Farmacogenética
2.
Curr Oncol ; 31(1): 274-295, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38248103

RESUMEN

Colorectal cancer is a common disease, both in Chile and worldwide. The most widely used chemotherapy schemes are based on 5-fluorouracil (5FU) as the foundational drug (FOLFOX, CapeOX). Genetic polymorphisms have emerged as potential predictive biomarkers of response to chemotherapy, but conclusive evidence is lacking. This study aimed to investigate the role of genetic variants associated with 5FU-based chemotherapy on therapeutic response, considering their interaction with oncogene mutations (KRAS, NRAS, PI3KCA, AKT1, BRAF). In a retrospective cohort of 63 patients diagnosed with metastatic colorectal cancer, a multivariate analysis revealed that liver metastases, DPYD, ABCB1, and MTHFR polymorphisms are independent indicators of poor prognosis, irrespective of oncogene mutations. BRAF wild-type status and high-risk drug-metabolism polymorphisms correlated with a poor prognosis in this Chilean cohort. Additionally, findings from the genomics of drug sensitivity (GDSC) project demonstrated that cell lines with wild-type BRAF have higher IC50 values for 5-FU compared to BRAF-mutated cell lines. In conclusion, the genetic polymorphisms DPYDrs1801265, ABCB1rs1045642, and MTHFRrs180113 may serve as useful biomarkers for predicting a poor prognosis in patients undergoing 5-fluorouracil chemotherapy, regardless of oncogene mutations.


Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas B-raf , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Estudios Retrospectivos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Mutación , Fluorouracilo/uso terapéutico , Biomarcadores
3.
Pharmacogenomics ; 25(2): 69-78, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288577

RESUMEN

Purpose: To compare minor allele frequencies (MAFs) of psychiatric drug response variants in a Brazilian admixed cohort with global populations and other Brazilian groups. Methods: PharmGKB MAFs were gathered from publicly available genetic datasets for Brazil and worldwide. Results: Among 146 variants in CYP2D6 and CYP2C19, 41 were present in Brazil, mostly rare (MAF <1%). 11 variants showed significant MAF differences with large effect sizes compared with global populations. CYP2C19*3 (rs4986893), CYP2C19*17 (rs12248560), CYP2D6*17 (rs28371706-A) and CYP2D6*29 (rs61736512) exhibited higher frequencies in Brazil, with the latter three also differing from other Brazilian groups. Conclusion: This study highlights significant pharmacogenomic diversity in Brazil and globally, underscoring the need for more research in personalized psychiatric drug therapy.


Asunto(s)
Citocromo P-450 CYP2D6 , Polimorfismo Genético , Humanos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2C19/genética , Brasil , Farmacogenética , Genotipo , Frecuencia de los Genes/genética
5.
Front Pharmacol ; 14: 1278769, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38044950

RESUMEN

In Uruguay, the pediatric acute lymphoblastic leukemia (ALL) cure rate is 82.2%, similar to those reported in developed countries. However, many patients suffer adverse effects that could be attributed, in part, to genetic variability. This study aims to identify genetic variants related to drugs administered during the induction phase and analyze their contribution to adverse effects, considering individual genetic ancestry. Ten polymorphisms in five genes (ABCB1, CYP3A5, CEP72, ASNS, and GRIA1) related to prednisone, vincristine, and L-asparaginase were genotyped in 200 patients. Ancestry was determined using 45 ancestry informative markers (AIMs). The sample ancestry was 69.2% European, 20.1% Native American, and 10.7% African, but with high heterogeneity. Mucositis, Cushing syndrome, and neurotoxicity were the only adverse effects linked with genetic variants and ancestry. Mucositis was significantly associated with ASNS (rs3832526; 3R/3R vs. 2R carriers; OR: = 6.88 [1.88-25.14], p = 0.004) and CYP3A5 (non-expressors vs. expressors; OR: 4.55 [1.01-20.15], p = 0.049) genes. Regarding Cushing syndrome, patients with the TA genotype (rs1049674, ASNS) had a higher risk of developing Cushing syndrome than those with the TT genotype (OR: 2.60 [1.23-5.51], p = 0.012). Neurotoxicity was significantly associated with ABCB1 (rs9282564; TC vs. TT; OR: 4.25 [1.47-12.29], p = 0.007). Moreover, patients with <20% Native American ancestry had a lower risk of developing neurotoxicity than those with ≥20% (OR: 0.312 [0.120-0.812], p = 0.017). This study shows the importance of knowing individual genetics to improve the efficacy and safety of acute lymphoblastic leukemia.

7.
Genes (Basel) ; 14(9)2023 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-37761953

RESUMEN

Cardiovascular disease (CVD) is one of the leading causes of death in Puerto Rico, where clopidogrel is commonly prescribed to prevent ischemic events. Genetic contributors to both a poor clopidogrel response and the severity of CVD have been identified mainly in Europeans. However, the non-random enrichment of single-nucleotide polymorphisms (SNPs) associated with clopidogrel resistance within risk loci linked to underlying CVDs, and the role of admixture, have yet to be tested. This study aimed to assess the possible interaction between genetic biomarkers linked to CVDs and those associated with clopidogrel resistance among admixed Caribbean Hispanics. We identified 50 SNPs significantly associated with CVDs in previous genome-wide association studies (GWASs). These SNPs were combined with another ten SNPs related to clopidogrel resistance in Caribbean Hispanics. We developed Python scripts to determine whether SNPs related to CVDs are in close proximity to those associated with the clopidogrel response. The average and individual local ancestry (LAI) within each locus were inferred, and 60 random SNPs with their corresponding LAIs were generated for enrichment estimation purposes. Our results showed no CVD-linked SNPs in close proximity to those associated with the clopidogrel response among Caribbean Hispanics. Consequently, no genetic loci with a dual predictive role for the risk of CVD severity and clopidogrel resistance were found in this population. Native American ancestry was the most enriched within the risk loci linked to CVDs in this population. The non-random enrichment of disease susceptibility loci with drug-response SNPs is a new frontier in Precision Medicine that needs further attention.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/genética , Clopidogrel/farmacología , Etnicidad/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética
8.
Plants (Basel) ; 12(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37176813

RESUMEN

The pharmacological properties of plants lie in the content of secondary metabolites that are classified into different categories based on their biosynthesis, structures, and functions. MicroRNAs (miRNAs) are small non-coding RNA molecules that play crucial post-transcriptional regulatory roles in plants, including development and stress-response signaling; however, information about their involvement in secondary metabolism is still limited. Cumin is one of the most popular seeds from the plant Cuminum cyminum, with extensive applications in herbal medicine and cooking; nevertheless, no previous studies focus on the miRNA profile of cumin. In this study, the miRNA profile of C. cyminum and its association with the biosynthesis of secondary metabolites were determined using NGS technology. The sequencing data yielded 10,956,054 distinct reads with lengths ranging from 16 to 40 nt, of which 349 miRNAs were found to be conserved and 39 to be novel miRNAs. Moreover, this work identified 1959 potential target genes for C. cyminum miRNAs. It is interesting to note that several conserved and novel miRNAs have been found to specifically target important terpenoid backbone, flavonoid biosynthesis, and lipid/fatty acid pathways enzymes. We believe this investigation will aid in elucidating the implications of miRNAs in plant secondary metabolism.

9.
Front Pharmacol ; 14: 1178715, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234706

RESUMEN

Introduction: Research in the field of pharmacogenomics (PGx) aims to identify genetic variants that modulate response to drugs, through alterations in their pharmacokinetics (PK) or pharmacodynamics (PD). The distribution of PGx variants differs considerably among populations, and whole-genome sequencing (WGS) plays a major role as a comprehensive approach to detect both common and rare variants. This study evaluated the frequency of PGx markers in the context of the Brazilian population, using data from a population-based admixed cohort from Sao Paulo, Brazil, which includes variants from WGS of 1,171 unrelated, elderly individuals. Methods: The Stargazer tool was used to call star alleles and structural variants (SVs) from 38 pharmacogenes. Clinically relevant variants were investigated, and the predicted drug response phenotype was analyzed in combination with the medication record to assess individuals potentially at high-risk of gene-drug interaction. Results: In total, 352 unique star alleles or haplotypes were observed, of which 255 and 199 had a frequency < 0.05 and < 0.01, respectively. For star alleles with frequency > 5% (n = 97), decreased, loss-of-function and unknown function accounted for 13.4%, 8.2% and 27.8% of alleles or haplotypes, respectively. Structural variants (SVs) were identified in 35 genes for at least one individual, and occurred with frequencies >5% for CYP2D6, CYP2A6, GSTM1, and UGT2B17. Overall 98.0% of the individuals carried at least one high risk genotype-predicted phenotype in pharmacogenes with PharmGKB level of evidence 1A for drug interaction. The Electronic Health Record (EHR) Priority Result Notation and the cohort medication registry were combined to assess high-risk gene-drug interactions. In general, 42.0% of the cohort used at least one PharmGKB evidence level 1A drug, and 18.9% of individuals who used PharmGKB evidence level 1A drugs had a genotype-predicted phenotype of high-risk gene-drug interaction. Conclusion: This study described the applicability of next-generation sequencing (NGS) techniques for translating PGx variants into clinically relevant phenotypes on a large scale in the Brazilian population and explores the feasibility of systematic adoption of PGx testing in Brazil.

10.
Front Pharmacol ; 14: 1175737, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251329

RESUMEN

Pharmacogenomics (PGx) is considered an emergent field in developing countries. Research on PGx in the Latin American and the Caribbean (LAC) region remains scarce, with limited information in some populations. Thus, extrapolations are complicated, especially in mixed populations. In this paper, we reviewed and analyzed pharmacogenomic knowledge among the LAC scientific and clinical community and examined barriers to clinical application. We performed a search for publications and clinical trials in the field worldwide and evaluated the contribution of LAC. Next, we conducted a regional structured survey that evaluated a list of 14 potential barriers to the clinical implementation of biomarkers based on their importance. In addition, a paired list of 54 genes/drugs was analyzed to determine an association between biomarkers and response to genomic medicine. This survey was compared to a previous survey performed in 2014 to assess progress in the region. The search results indicated that Latin American and Caribbean countries have contributed 3.44% of the total publications and 2.45% of the PGx-related clinical trials worldwide thus far. A total of 106 professionals from 17 countries answered the survey. Six major groups of barriers were identified. Despite the region's continuous efforts in the last decade, the primary barrier to PGx implementation in LAC remains the same, the "need for guidelines, processes, and protocols for the clinical application of pharmacogenetics/pharmacogenomics". Cost-effectiveness issues are considered critical factors in the region. Items related to the reluctance of clinicians are currently less relevant. Based on the survey results, the highest ranked (96%-99%) gene/drug pairs perceived as important were CYP2D6/tamoxifen, CYP3A5/tacrolimus, CYP2D6/opioids, DPYD/fluoropyrimidines, TMPT/thiopurines, CYP2D6/tricyclic antidepressants, CYP2C19/tricyclic antidepressants, NUDT15/thiopurines, CYP2B6/efavirenz, and CYP2C19/clopidogrel. In conclusion, although the global contribution of LAC countries remains low in the PGx field, a relevant improvement has been observed in the region. The perception of the usefulness of PGx tests in biomedical community has drastically changed, raising awareness among physicians, which suggests a promising future in the clinical applications of PGx in LAC.

12.
Front Pharmacol ; 14: 1047854, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37021041

RESUMEN

Background: Genetic interindividual variability is associated with adverse drug reactions (ADRs) and affects the response to common drugs used in anesthesia. Despite their importance, these variants remain largely underexplored in Latin-American countries. This study describes rare and common variants found in genes related to metabolism of analgesic and anaesthetic drug in the Colombian population. Methods: We conducted a study that included 625 Colombian healthy individuals. We generated a subset of 14 genes implicated in metabolic pathways of common medications used in anesthesia and assessed them by whole-exome sequencing (WES). Variants were filtered using two pipelines: A) novel or rare (minor allele frequency-MAF <1%) variants including missense, loss-of-function (LoF, e.g., frameshift, nonsense), and splice site variants with potential deleterious effect and B) clinically validated variants described in the PharmGKB (categories 1, 2 and 3) and/or ClinVar databases. For rare and novel missense variants, we applied an optimized prediction framework (OPF) to assess the functional impact of pharmacogenetic variants. Allelic, genotypic frequencies and Hardy-Weinberg equilibrium were calculated. We compare our allelic frequencies with these from populations described in the gnomAD database. Results: Our study identified 148 molecular variants potentially related to variability in the therapeutic response to 14 drugs commonly used in anesthesiology. 83.1% of them correspond to rare and novel missense variants classified as pathogenic according to the pharmacogenetic optimized prediction framework, 5.4% were loss-of-function (LoF), 2.7% led to potential splicing alterations and 8.8% were assigned as actionable or informative pharmacogenetic variants. Novel variants were confirmed by Sanger sequencing. Allelic frequency comparison showed that the Colombian population has a unique pharmacogenomic profile for anesthesia drugs with some allele frequencies different from other populations. Conclusion: Our results demonstrated high allelic heterogeneity among the analyzed sampled, enriched by rare (91.2%) variants in pharmacogenes related to common drugs used in anesthesia. The clinical implications of these results highlight the importance of implementation of next-generation sequencing data into pharmacogenomic approaches and personalized medicine.

13.
Pharmacogenomics ; 24(5): 239-241, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37014403

RESUMEN

Tweetable abstract Opportunities for pharmacogenetics implementation in chronic respiratory diseases through the employment of genotype-guided prescriptions in treating nonrespiratory comorbidities.


Asunto(s)
Farmacogenética , Enfermedades Respiratorias , Humanos , Genotipo , Enfermedades Respiratorias/tratamiento farmacológico , Enfermedades Respiratorias/genética
14.
Expert Opin Drug Saf ; 22(7): 621-627, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36794346

RESUMEN

BACKGROUND: Adverse drug reactions (ADRs) are of great concern in clinical practice. Pharmacogenetics can identify individuals and groups at increased risk of developing ADRs, enabling treatment adjustments to improve outcomes. The study aimed to determine the prevalence of ADRs related to drugs with pharmacogenetic evidence level 1A in a public hospital in Southern Brazil. RESEARCH DESIGN AND METHODS: ADR information was collected from the pharmaceutical registries from 2017 to 2019. Drugs that have pharmacogenetic evidence level 1A were selected. Public genomic databases were used to estimate the genotypes/phenotypes frequency. RESULTS: During the period, 585 ADRs were spontaneously notified. Most were moderate (76.3%), whereas severe reactions accounted for 33.8%. Additionally, 109 ADRs caused by 41 drugs presented pharmacogenetic evidence level 1A, representing 18.6% of all notified reactions. Depending on the drug-gene pair, up to 35% of individuals from Southern Brazil could be at risk of developing ADRs. CONCLUSIONS: Relevant amount of ADRs were related to drugs with pharmacogenetic recommendations on drug labels and/or guidelines. Genetic information could guide and improve clinical outcomes, decreasing ADR incidence and reducing treatment costs.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Farmacogenética , Humanos , Brasil/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Etiquetado de Medicamentos , Hospitales Públicos , Sistemas de Registro de Reacción Adversa a Medicamentos , Farmacovigilancia
15.
J Gastrointest Cancer ; 54(2): 589-599, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35710870

RESUMEN

PURPOSE: The variability on irinotecan (IRI) pharmacokinetics and toxicity has been attributed mostly to genetic variations in the UGT1A1 gene, responsible for conjugation of the active metabolite SN-38. Also, CYP3A mediates the formation of inactive oxidative metabolites of IRI. The association between the occurrence of severe adverse events, pharmacokinetics parameters, and UGT1A1 and CYP3A4 predicted phenotypes was evaluated, as the evaluation of [SN-38]/IRI dose ratio as predictor of severe adverse events. METHODS: Forty-one patients undergoing IRI therapy were enrolled in the study. Blood samples were collected 15 min after the end of drug the infusion, for IRI, SN-38, SN-38G, bilirubin concentrations measurements, and UGT1A1 and CYP3A genotype estimation. Data on adverse event was reported. RESULTS: Fifteen patients (36.5%) developed grade 3/4 adverse events. A total of 9.8% (n = 4) of the patients had UGT1A1 reduced activity phenotype, and 48.7% (n = 20) had UGT1A1 and 63.4% (n = 26) CYP3A intermediary phenotypes. Severe neutropenia and diarrhea were more prevalent in patients with reduced UGT1A1 in comparison with functional metabolism (50% and 75% versus 0% and 13%, respectively). SN-38 levels and its concentrations adjusted by IRI dose were significantly correlated to toxicity (rs = 0.31 (p = 0.05) and rs = 0.425 (p < 0.01)). The [SN-38]/IRI dose ratio had a ROC curve of 0.823 (95% CI 0.69-0.956) to detect any severe adverse event and 0.833 (95% CI 0.694-0.973) to detect severe diarrhea. The cut-off of 0.075 ng mL-1 mg-1 had 100% sensitivity and 65.7% specificity to predict severe diarrhea. CONCLUSION: Our data confirmed the relevance of the pre-emptive genotypic information of UGT1A1. The [SN-38]/IRI ratio, measured 15 min after the end of the IRI infusion, was a strong predictor of severe toxicity and could be applied to minimize the burden of patients after IRI administration.


Asunto(s)
Antineoplásicos Fitogénicos , Neoplasias , Humanos , Irinotecán/efectos adversos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/uso terapéutico , Genotipo , Antineoplásicos Fitogénicos/efectos adversos , Camptotecina , Diarrea/inducido químicamente , Diarrea/epidemiología , Neoplasias/tratamiento farmacológico , Neoplasias/genética
16.
Front Oncol ; 13: 1276352, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38269022

RESUMEN

Background: Advances in the understanding of the pathobiology of childhood B-cell acute lymphoblastic leukemia (B-ALL) have led towards risk-oriented treatment regimens and markedly improved survival rates. However, treatment-related toxicities remain a major cause of mortality in developing countries. One of the most common adverse effects of chemotherapy in B-ALL is the hematologic toxicity, which may be related to genetic variants in membrane transporters that are critical for drug absorption, distribution, and elimination. In this study we detected genetic variants present in a selected group genes of the ABC and SLC families that are associated with the risk of high-grade hematologic adverse events due to chemotherapy treatment in a group of Mexican children with B-ALL. Methods: Next generation sequencing (NGS) was used to screen six genes of the ABC and seven genes of the SLC transporter families, in a cohort of 96 children with B-ALL. The grade of hematologic toxicity was classified according to the National Cancer Institute's Common Terminology Criteria for Adverse Events (CTCAE) version 5.0, Subsequently, two groups of patients were formed: the null/low-grade (grades 1 and 2) and the high-grade (grades 3 to 5) adverse events groups. To determine whether there is an association between the genetic variants and high-grade hematologic adverse events, logistic regression analyses were performed using co-dominant, dominant, recessive, overdominant and log-additive inheritance models. Odds ratio (OR) and 95% confidence intervals (95% CI) were calculated. Results: We found two types of associations among the genetic variants identified as possible predictor factors of hematologic toxicity. One group of variants associated with high-grade toxicity risk: ABCC1 rs129081; ABCC4 rs227409; ABCC5 rs939338, rs1132776, rs3749442, rs4148575, rs4148579 and rs4148580; and another group of protective variants that includes ABCC1 rs212087 and rs212090; SLC22A6 rs4149170, rs4149171 and rs955434. Conclusion: There are genetic variants in the SLC and ABC transporter families present in Mexican children with B-ALL that can be considered as potential risk markers for hematologic toxicity secondary to chemotherapeutic treatment, as well as other protective variants that may be useful in addition to conventional risk stratification for therapeutic decision making in these highly vulnerable patients.

18.
Expert Rev Respir Med ; 16(11-12): 1145-1152, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36416606

RESUMEN

INTRODUCTION: The study of genetic variants in response to different drugs has predominated in fields of medicine such as oncology and infectious diseases. In chronic respiratory diseases, the available pharmacogenomic information is scarce but not less relevant. AREAS COVERED: We searched the pharmacogenomic recommendations for respiratory diseases in the Table of Pharmacogenomic Biomarkers in Drug Labeling (U.S. Food and Drug Administration), the Clinical Pharmacogenomics Implementation Consortium (CPIC), and PharmGKB. The main pharmacogenomics recommendation in this field is to assess CFTR variants for using ivacaftor and its combination. The drugs' labels for arformoterol, indacaterol, and umeclidinium indicate a lack of influence of genetic variants in the pharmacokinetics of these drugs. Further studies should evaluate the contribution of CYP2D6 and CYP2C19 variants for formoterol. In addition, there are reports of potential pharmacogenetic variants in the treatment with acetylcysteine (TOLLIP rs3750920) and captopril (ACE rs1799752). The genetic variations for warfarin also are presented in PharmGKB and CPIC for patients with pulmonary hypertension. EXPERT OPINION: The pharmacogenomics recommendations for lung diseases are limited. The clinical implementation of pharmacogenomics in treating respiratory diseases will contribute to the quality of life of patients with chronic respiratory diseases.


Asunto(s)
Farmacogenética , Calidad de Vida , Humanos , Biomarcadores
19.
Tuberculosis (Edinb) ; 136: 102248, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36055153

RESUMEN

Rifampicin is one of the most important drugs for the treatment of tuberculosis (TB). Polymorphisms in SLCO1B1 and SLC10A1 genes are associated with impaired transporter function of drug compounds such as rifampicin. The relationship between genetic variation, clinical comorbidities, and rifampicin exposures in TB patients has not been completely elucidated. The aim of this study was to investigate the prevalence of SLCO1A1 and SLCO1B1 polymorphisms in TB and TB-DM patients and to determine their relationship with rifampicin pharmacokinetics on patients from México. Blood samples were collected in two hospitals in Baja California, Mexico from February through December 2017. Sampling included 19 patients with TB, 11 with T2DM and 17 healthy individuals. Polymorphisms genotype rs2306283, rs11045818, rs11045819, rs4149056, rs4149057, rs72559746,rs2291075 and rs4603354 of SLCO1B1 and rs4646285 and rs138880008 of SLC10A1 were analyzed by Sanger's sequencing. None of the SLCO1B1 and SLC10A1 variants were significantly associated with rifampicin Cmax. TB and T2DM patients with suboptimal Cmax rifampicin levels showed wild alleles in rs11045819 and rs2291075 in SLCO1B1 SLC10A1 and SLC10A1. This is the first study to analyze SLC10A1 and SLCO1B1 polymorphisms in TB and TB-T2DM patients and healthy individuals in Mexico. Further research to confirm and extend these findings is necessary.


Asunto(s)
Diabetes Mellitus Tipo 2 , Mycobacterium tuberculosis , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Simportadores/genética , Tuberculosis , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/epidemiología , Genotipo , Humanos , Transportador 1 de Anión Orgánico Específico del Hígado/genética , México/epidemiología , Morbilidad , Polimorfismo de Nucleótido Simple , Rifampin , Tuberculosis/diagnóstico , Tuberculosis/tratamiento farmacológico , Tuberculosis/epidemiología
20.
Curr Top Med Chem ; 22(20): 1654-1673, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35927918

RESUMEN

Breast cancer represents a health concern worldwide for being the leading cause of cancer- related women's death. The main challenge for breast cancer treatment involves its heterogeneous nature with distinct clinical outcomes. It is clinically categorized into five subtypes: luminal A; luminal B, HER2-positive, luminal-HER, and triple-negative. Despite the significant advances in the past decades, critical issues involving the development of efficient target-specific therapies and overcoming treatment resistance still need to be better addressed. OMICs-based strategies have marked a revolution in cancer biology comprehension in the past two decades. It is a consensus that Next-Generation Sequencing (NGS) is the primary source of this revolution and the development of relevant consortia translating pharmacogenomics into clinical practice. Still, new approaches, such as CRISPR editing and epigenomic sequencing are essential for target and biomarker discoveries. Here, we discuss genomics and epigenomics techniques, how they have been applied in clinical management and to improve therapeutic strategies in breast cancer, as well as the pharmacogenomics translation into the current and upcoming clinical routine.


Asunto(s)
Neoplasias de la Mama , Biomarcadores de Tumor/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Femenino , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Farmacogenética , Receptor ErbB-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA