Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Vaccine X ; 8: 100103, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34179765

RESUMEN

Many countries have reported antigenic divergence among circulating Bordetella pertussis strains, mainly in those countries which introduced the acellular pertussis (aP) vaccine. This phenomenon can be seen, for example, with the recent rise of pertactin (Prn)-deficient B. pertussis strains, one of the antigens included in aP vaccine formulas. The whole cell pertussis (wP) vaccine has been used in Brazil since 1977 for the primary pertussis, diphtheria and tetanus immunization series. In 2014, the aP vaccine was recommended for women during pregnancy to protect infants in the first months of life. Our objective was to determine the prevalence of Prn-deficiency in 511 isolates of B. pertussis collected in Brazil during 2010-2016. All isolates were characterized, through PFGE and serotyping, and screened for the loss of Prn by ELISA. Prn-deficiency was confirmed by immunoblotting, and identification of the possible genetic markers was performed with PCR and Sanger sequencing. Results indicate that 110 PFGE profiles are currently circulating, with five profiles representing the majority, and the predominant serotype 3, has been gradually replaced by serotype 2 and serotype 2,3. ELISA screening and immunoblotting identified three Prn-deficient isolates. Genotypic characterization by PCR and sequencing indicated that one isolate had a promoter mutation in prn, while the other two did not have an obvious genetic explanation for their deficiency. While the lack of Prn was identified in a few isolates, this study did not detect a relevant occurrence of Prn-deficiency, until 2016, confirming previous observations that Prn-deficiency is likely aP vaccine-driven.

2.
Vaccine: X ; 8: 100103, 7 jun. 2021. graf, tab
Artículo en Inglés | CONASS, Coleciona SUS, Sec. Est. Saúde SP, SESSP-IALPROD, Sec. Est. Saúde SP, SESSP-IALACERVO | ID: biblio-1570181

RESUMEN

Many countries have reported antigenic divergence among circulating Bordetella pertussis strains, mainly in those countries which introduced the acellular pertussis (aP) vaccine. This phenomenon can be seen, for example, with the recent rise of pertactin (Prn)-deficient B. pertussis strains, one of the antigens included in aP vaccine formulas. The whole cell pertussis (wP) vaccine has been used in Brazil since 1977 for the primary pertussis, diphtheria and tetanus immunization series. In 2014, the aP vaccine was recommended for women during pregnancy to protect infants in the first months of life. Our objective was to determine the prevalence of Prn-deficiency in 511 isolates of B. pertussis collected in Brazil during 2010­2016. All isolates were characterized, through PFGE and serotyping, and screened for the loss of Prn by ELISA. Prn-deficiency was confirmed by immunoblotting, and identification of the possible genetic markers was performed with PCR and Sanger sequencing. Results indicate that 110 PFGE profiles are currently circulating, with five profiles representing the majority, and the predominant serotype 3, has been gradually replaced by serotype 2 and serotype 2,3. ELISA screening and immunoblotting identified three Prn-deficient isolates. Genotypic characterization by PCR and sequencing indicated that one isolate had a promoter mutation in prn, while the other two did not have an obvious genetic explanation for their deficiency. While the lack of Prn was identified in a few isolates, this study did not detect a relevant occurrence of Prn-deficiency, until 2016, confirming previous observations that Prn-deficiency is likely aP vaccine-driven. (AU)


Asunto(s)
Bordetella pertussis , Brasil , Serotipificación , Tos Ferina , Vacunación , Tipificación Molecular
3.
Emerg Infect Dis ; 25(11): 2048-2054, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31625838

RESUMEN

Pertussis resurgence had been attributed to waning vaccine immunity and Bordetella pertussis adaptation to escape vaccine-induced immunity. Circulating bacteria differ genotypically from strains used in production of pertussis vaccine. Pertactin-deficient strains are highly prevalent in countries that use acellular vaccine (aP), suggesting strong aP-imposed selection of circulating bacteria. To corroborate this hypothesis, systematic studies on pertactin prevalence of infection in countries using whole-cell vaccine are needed. We provide pertussis epidemiologic data and molecular characterization of B. pertussis isolates from Buenos Aires, Argentina, during 2000-2017. This area used primary vaccination with whole-cell vaccine. Since 2002, pertussis case incidences increased at regular 4-year outbreaks; most cases were in infants <1 year of age. Of the B. pertussis isolates analyzed, 90.6% (317/350) contained the ptxP3-ptxA1-prn2-fim3-2 allelic profile. Immunoblotting and sequencing techniques detected only the 2 pertactin-deficient isolates. The low prevalence of pertactin-deficient strains in Argentina suggests that loss of pertactin gene expression might be driven by aP vaccine.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Bordetella pertussis/clasificación , Bordetella pertussis/genética , Eliminación de Gen , Factores de Virulencia de Bordetella/genética , Tos Ferina/epidemiología , Tos Ferina/microbiología , Argentina/epidemiología , Proteínas de la Membrana Bacteriana Externa/inmunología , Bordetella pertussis/inmunología , Niño , Preescolar , Genotipo , Humanos , Lactante , Vacuna contra la Tos Ferina/administración & dosificación , Vacuna contra la Tos Ferina/inmunología , Vigilancia en Salud Pública , Serogrupo , Factores de Virulencia de Bordetella/inmunología , Tos Ferina/diagnóstico , Tos Ferina/prevención & control
4.
Artículo en Inglés | MEDLINE | ID: mdl-31106160

RESUMEN

Pertussis is a respiratory infectious disease that has been resurged during the last decades. The change from the traditional multi-antigen whole-cell pertussis (wP) vaccines to acellular pertussis (aP) vaccines that consist of a few antigens formulated with alum, appears to be a key factor in the resurgence of pertussis in many countries. Though current aP vaccines have helped to reduce the morbidity and mortality associated with pertussis, they do not provide durable immunity or adequate protection against the disease caused by the current circulating strains of Bordetella pertussis, which have evolved in the face of the selection pressure induced by the vaccines. Based on the hypothesis that a new vaccine containing multiple antigens could overcome deficiencies in the current aP vaccines, we have designed and characterized a vaccine candidate based on outer membrane vesicle (OMVs). Here we show that the OMVs vaccine, but not an aP vaccine, protected mice against lung infection with a circulating pertactin (PRN)-deficient isolate. Using isogenic bacteria that in principle only differ in PRN expression, we found that deficiency in PRN appears to be largely responsible for the failure of the aP vaccine to protect against this circulating clinical isolates. Regarding the durability of induced immunity, we have already reported that the OMV vaccine is able to induce long-lasting immune responses that effectively prevent infection with B. pertussis. Consistent with this, here we found that CD4 T cells with a tissue-resident memory (TRM) cell phenotype (CD44+CD62LlowCD69+ and/or CD103+) accumulated in the lungs of mice 14 days after immunization with 2 doses of the OMVs vaccine. CD4 TRM cells, which have previously been shown to play a critical role sustained protective immunity against B. pertussis, were also detected in mice immunized with wP vaccine, but not in the animals immunized with a commercial aP vaccine. The CD4 TRM cells secreted IFN-γ and IL-17 and were significantly expanded through local proliferation following respiratory challenge of mice with B. pertussis. Our findings that the OMVs vaccine induce respiratory CD4 TRM cells may explain the ability of this vaccine to induce long-term protection and is therefore an ideal candidate for a third generation vaccine against B. pertussis.


Asunto(s)
Bordetella pertussis/inmunología , Linfocitos T CD4-Positivos/inmunología , Exosomas/inmunología , Memoria Inmunológica , Vacuna contra la Tos Ferina/inmunología , Tos Ferina/prevención & control , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Factores Inmunológicos/metabolismo , Ratones , Vacuna contra la Tos Ferina/administración & dosificación , Vacunas Acelulares/administración & dosificación , Vacunas Acelulares/inmunología
5.
Hum Vaccin Immunother ; 11(7): 1770-4, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26075317

RESUMEN

Reduced-antigen-content diphtheria-tetanus-acellular pertussis (dTpa) vaccine, Boostrix™, is indicated for booster vaccination of children, adolescents and adults. The original prefilled disposable dTpa syringe presentation was recently replaced by another prefilled-syringe presentation with latex-free tip-caps and plunger-stoppers. 671 healthy adolescents aged 10-15 years who had previously received 5 or 6 previous DT(P)/dT(pa) vaccine doses, were randomized (1:1) to receive dTpa booster, injected using the new (dTpa-new) or previous syringe (dTpa-previous) presentations. Immunogenicity was assessed before and 1-month post-booster vaccination; safety/reactogenicity were assessed during 31-days post-vaccination. Non-inferiority of dTpa-new versus dTpa-previous was demonstrated for all antigens (ULs 95% CIs for GMC ratios ranged between 1.03-1.13). 1-month post-booster, immune responses were in similar ranges for all antigens with both syringe presentations. dTpa delivered using either syringe presentation was well-tolerated. These clinical results complement the technical data and support the use of the new syringe presentation to deliver the dTpa vaccine.


Asunto(s)
Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/administración & dosificación , Jeringas , Adolescente , Anticuerpos/análisis , Antígenos/análisis , Niño , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/efectos adversos , Vacunas contra Difteria, Tétanos y Tos Ferina Acelular/inmunología , Femenino , Humanos , Inmunización Secundaria , Masculino , Método Simple Ciego , Resultado del Tratamiento , Vacunación
6.
Vaccine ; 32(47): 6251-8, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25252193

RESUMEN

Pertussis is a serious infectious disease of the respiratory tract caused by the gram-negative bacteria Bordetella pertussis. There has been a reemergence of this disease within the population of several countries that have well established vaccination programs. Analyzes of clinical isolates suggest an antigenic divergence between the vaccine-based strains to the circulating strains. Although antibodies against P.69 are involved in the observed protective immunity, the sequences recognized as antigenic determinants in P.133, the precursor for P.69, P.3.4 and P.30, have not be determined. Here, the precise mapping of linear B-cell epitopes within the predicted P.133 pertactin sequences was accomplished using the SPOT-synthesis of peptide arrays onto cellulose membranes and screening with murine sera generated by vaccination with either the Pertussis cellular (miPc) or Pertussis acellular (miPa) vaccine. A total of 23 major epitopes were identified by sera from miPc vaccinated mice, while thirteen were identified by sera from miPa vaccinated mice. Of these epitopes, 12 epitopes were specifically identified by antibodies produced in response to the miPc vaccine and two were specific to the miPa vaccine. These epitopes were distributed throughout the pertactin sequence but a significant number were concentrated to the P.30 Prn segment. An analysis of the epitope correlation homologies indicated that the variations from the observed mutations in pertactin would not constitute a problem using these vaccines. In addition, the mapping of epitopes demonstrated a higher number of linear B-cell epitopes immunized with the Pc vaccine than the Pa vaccine.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Mapeo Epitopo , Epítopos de Linfocito B/inmunología , Vacuna contra la Tos Ferina/inmunología , Factores de Virulencia de Bordetella/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Antibacterianos/sangre , Bordetella pertussis/inmunología , Reacciones Cruzadas , Ratones , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Vacunas Acelulares/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA