Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Biotechnol Lett ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066960

RESUMEN

PURPOSE: Perfusion cultures have been extensively used in the biotechnology industry to achieve high yields of recombinant products, especially those with stability issue. The WuXiUP™ platform represents a novel intensified perfusion that can achieve ultra-high productivity. This study describes a representative scale-down 24-deep well plate (24-DWP) cell culture model for intensified perfusion clone screening. METHODS: Clonal cell lines were expanded and evaluated in 24-DWP semi-continuous culture. Cell were sampled and counted daily with the aid of an automated liquid handler and high-throughput cell counter. To mimic perfusion culture, 24-DWP plates were spun down and resuspended with fresh medium daily. Top clones were ranked based on growth profiles and productivities. The best performing clones were evaluated on bioreactors. RESULTS: The selected clones achieved volumetric productivity (Pv) up to 5 g/L/day when expressing a monoclonal antibody, with the accumulative harvest Pv exceeding 60 g/L in a 21-day cell culture. Product quality attributes of clones cultured in 24-DWP were comparable with those from bioreactors. A high seeding strategy further shortened the clone screening timeline. CONCLUSION: In this study, a 24-DWP semi-continuous scale-down model was successfully developed to screen for cell lines suitable for intensified perfusion culture.

2.
J Neurosci Methods ; 408: 110181, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823594

RESUMEN

BACKGROUND: Ex vivo cultures of retinal explants are appropriate models for translational research. However, one of the difficult problems of retinal explants ex vivo culture is that their nutrient supply needs cannot be constantly met. NEW METHOD: This study evaluated the effect of perfused culture on the survival of retinal explants, addressing the challenge of insufficient nutrition in static culture. Furthermore, exosomes secreted from retinal organoids (RO-Exos) were stained with PKH26 to track their uptake in retinal explants to mimic the efficacy of exosomal drugs in vivo. RESULTS: We found that the retinal explants cultured with perfusion exhibited significantly higher viability, increased NeuN+ cells, and reduced apoptosis compared to the static culture group at Days Ex Vivo (DEV) 4, 7, and 14. The perfusion-cultured retinal explants exhibited reduced mRNA markers for gliosis and microglial activation, along with lower expression of GFAP and Iba1, as revealed by immunostaining. Additionally, RNA-sequencing analysis showed that perfusion culture mainly upregulated genes associated with visual perception and photoreceptor cell maintenance while downregulating the immune system process and immune response. RO-Exos promoted the uptake of PKH26-labelled exosomes and the growth of retinal explants in perfusion culture. COMPARISON WITH EXISTING METHODS: Our perfusion culture system can provide a continuous supply of culture medium to achieve steady-state equilibrium in retinal explant culture. Compared to traditional static culture, it better preserves the vitality, provides better neuroprotection, and reduces glial activation. CONCLUSIONS: This study provides a promising ex vivo model for further studies on degenerative retinal diseases and drug screening.


Asunto(s)
Exosomas , Organoides , Retina , Animales , Organoides/metabolismo , Retina/citología , Retina/metabolismo , Exosomas/metabolismo , Perfusión/métodos , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Tejidos/métodos , Supervivencia Celular/fisiología , Supervivencia Celular/efectos de los fármacos
3.
Biofabrication ; 16(3)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38569494

RESUMEN

The ever-stricter regulations on animal experiments in the field of cosmetic testing have prompted a surge in skin-related research with a special focus on recapitulation of thein vivoskin structurein vitro. In vitrohuman skin models are seen as an important tool for skin research, which in recent years attracted a lot of attention and effort, with researchers moving from the simplest 2-layered models (dermis with epidermis) to models that incorporate other vital skin structures such as hypodermis, vascular structures, and skin appendages. In this study, we designed a microfluidic device with a reverse flange-shaped anchor that allows culturing of anin vitroskin model in a conventional 6-well plate and assessing its barrier function without transferring the skin model to another device or using additional contraptions. Perfusion of the skin model through vascular-like channels improved the morphogenesis of the epidermis compared with skin models cultured under static conditions. This also allowed us to assess the percutaneous penetration of the tested caffeine permeation and vascular absorption, which is one of the key metrics for systemic drug exposure evaluation.


Asunto(s)
Epidermis , Piel , Animales , Piel/metabolismo , Epidermis/química , Epidermis/metabolismo , Absorción Cutánea , Cafeína/farmacología , Cafeína/análisis , Cafeína/metabolismo , Perfusión
4.
Mol Ther Methods Clin Dev ; 32(1): 101209, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38435128

RESUMEN

Continuous manufacturing of lentiviral vectors (LVs) using stable producer cell lines could extend production periods, improve batch-to-batch reproducibility, and eliminate costly plasmid DNA and transfection reagents. A continuous process was established by expanding cells constitutively expressing third-generation LVs in the iCELLis Nano fixed-bed bioreactor. Fixed-bed bioreactors provide scalable expansion of adherent cells and enable a straightforward transition from traditional surface-based culture vessels. At 0.5 vessel volume per day (VVD), the short half-life of LVs resulted in a low total infectious titer at 1.36 × 104 TU cm-2. Higher perfusion rates increased titers, peaking at 7.87 × 104 TU cm-2 at 1.5 VVD. The supernatant at 0.5 VVD had a physical-to-infectious particle ratio of 659, whereas this was 166 ± 15 at 1, 1.5, and 2 VVD. Reducing the pH from 7.20 to 6.85 at 1.5 VVD improved the total infectious yield to 9.10 × 104 TU cm-2. Three independent runs at 1.5 VVD and a culture pH of 6.85 showed low batch-to-batch variability, with a coefficient of variation of 6.4% and 10.0% for total infectious and physical LV yield, respectively. This study demonstrated the manufacture of high-quality LV supernatant using a stable producer cell line that does not require induction.

5.
Methods Mol Biol ; 2783: 269-278, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478239

RESUMEN

Conventional therapies to address critically sized defects in subcutaneous adipose tissue remain a reconstructive challenge for surgeons, largely due to the lack of graft pre-vascularization. Adipose tissue relies on a dense microvasculature network to deliver nutrients, oxygen, nonadipose tissue-derived growth factors, cytokines, and hormones, as well as transporting adipose tissue-derived endocrine signals to other organ systems. This chapter addresses these vascularization issues by combining decellularized lung matrices with a step-wise seeding of patient-specific adipose-derived stem cells and endothelial cells to develop large-volume, perfusable, and pre-vascularized adipose grafts.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Humanos , Células Endoteliales , Tejido Adiposo , Adipocitos
6.
ACS Biomater Sci Eng ; 10(3): 1607-1619, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38416687

RESUMEN

Encapsulating multiple growth factors within a scaffold enhances the regenerative capacity of engineered bone grafts through their localization and controls the spatiotemporal release profile. In this study, we bioprinted hybrid bone grafts with an inherent built-in controlled growth factor delivery system, which would contribute to vascularized bone formation using a single stem cell source, human adipose-derived stem/stromal cells (ASCs) in vitro. The strategy was to provide precise control over the ASC-derived osteogenesis and angiogenesis at certain regions of the graft through the activity of spatially positioned microencapsulated BMP-2 and VEGF within the osteogenic and angiogenic bioink during bioprinting. The 3D-bioprinted vascularized bone grafts were cultured in a perfusion bioreactor. Results proved localized expression of osteopontin and CD31 by the ASCs, which was made possible through the localized delivery activity of the built-in delivery system. In conclusion, this approach provided a methodology for generating off-the-shelf constructs for vascularized bone regeneration and has the potential to enable single-step, in situ bioprinting procedures for creating vascularized bone implants when applied to bone defects.


Asunto(s)
Bioimpresión , Humanos , Ingeniería de Tejidos/métodos , Huesos , Péptidos y Proteínas de Señalización Intercelular , Células del Estroma/trasplante
7.
Biotechnol J ; 19(1): e2300244, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37767876

RESUMEN

Oncolytic viruses (OVs) have emerged as a novel cancer treatment modality, and four OVs have been approved for cancer immunotherapy. However, high-yield and cost-effective production processes remain to be developed for most OVs. Here suspension-adapted Vero cell culture processes were developed for high titer production of an OV model, herpes simplex virus type 1 (HSV-1). Our study showed the HSV-1 productivity was significantly affected by multiplicity of infection, cell density, and nutritional supplies. Cell culture conditions were first optimized in shake flask experiments and then scaled up to 3 L bioreactors for virus production under batch and perfusion modes. A titer of 2.7 × 108 TCID50 mL-1 was obtained in 3 L batch culture infected at a cell density of 1.4 × 106 cells mL-1 , and was further improved to 1.1 × 109 TCID50 mL-1 in perfusion culture infected at 4.6 × 106 cells mL-1 . These titers are similar to or better than the previously reported best titer of 8.6 × 107 TCID50 mL-1 and 8.1 × 108 TCID50 mL-1 respectively obtained in labor-intensive adherent Vero batch and perfusion cultures. HSV-1 production in batch culture was successfully scaled up to 60 L pilot-scale bioreactor to demonstrate the scalability. The work reported here is the first study demonstrating high titer production of HSV-1 in suspension Vero cell culture under different bioreactor operating modes.


Asunto(s)
Herpesvirus Humano 1 , Virus Oncolíticos , Animales , Chlorocebus aethiops , Herpesvirus Humano 1/genética , Células Vero , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Cultivo de Virus
8.
Biotechnol Bioeng ; 121(2): 605-617, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37960996

RESUMEN

To enhance the robustness and flexibility of biopharmaceutical manufacturing, a paradigm shift toward methods of continuous processing, such as perfusion, and fundamental technologies for high-throughput process development are being actively investigated. The continuous upstream process must establish an advanced control strategy to ensure a "State of Control" before operation. Specifically, feedforward and feedback control must address the complex fluctuations that occur during the culture process and maintain critical process parameters in appropriate states. However, control system design for industry-standard mammalian cell culture processes is still often performed in a laborious trial-and-error manner. This paper provides a novel control approach in which controller specifications to obtain desired control characteristics can be determined systematically by combining a culture model with control theory. In the proposed scheme, control conditions, such as PID parameters, can be specified mechanistically based on process understanding and control requirements without qualitative decision making or specific preliminary experiments. The effectiveness of the model-based control algorithm was verified by control simulations assuming perfusion Chinese hamster ovary culture. As a tool to assist in the development of control strategies, this study will reduce the high operational workload that is a serious problem in continuous culture and facilitate the digitalization of bioprocesses.


Asunto(s)
Productos Biológicos , Cricetinae , Animales , Células CHO , Cricetulus , Técnicas de Cultivo de Célula , Tecnología
9.
Biotechnol Bioeng ; 121(2): 696-709, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37994547

RESUMEN

Intensified fed-batch (IFB), a popular cell culture intensification strategy, has been widely used for productivity improvement through high density inoculation followed by fed-batch cultivation. However, such an intensification strategy may counterproductively induce rapidly progressing cell apoptosis and difficult-to-sustain productivity. To improve culture performance, we developed a novel cell culture process intermittent-perfusion fed-batch (IPFB) which incorporates one single or multiple cycles of intermittent perfusion during an IFB process for better sustained cellular and metabolic behaviors and notably improved productivity. Unlike continuous perfusion or other semi-continuous processes such as hybrid perfusion fed-batch with only early-stage perfusion, IPFB applies limited times of intermittent perfusion in the mid-to-late stage of production and still inherits bolus feedings on nonperfusion days as in a fed-batch culture. Compared to IFB, an average titer increase of ~45% was obtained in eight recombinant CHO cell lines studied. Beyond IPFB, ultra-intensified IPFB (UI-IPFB) was designed with a markedly elevated seeding density of 20-80 × 106 cell/mL, achieved through the conventional alternating tangential flow filtration (ATF) perfusion expansion followed with a cell culture concentration step using the same ATF system. With UI-IPFB, up to ~6 folds of traditional fed-batch and ~3 folds of IFB productivity were achieved. Furthermore, the application grounded in these two novel processes showed broad-based feasibility in multiple cell lines and products of interest, and was proven to be effective in cost of goods reduction and readily scalable to a larger scale in existing facilities.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Cricetinae , Animales , Cricetulus , Células CHO , Perfusión
10.
Front Bioeng Biotechnol ; 11: 1287551, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38050488

RESUMEN

We have developed a single process for producing two key COVID-19 vaccine antigens: SARS-CoV-2 receptor binding domain (RBD) monomer and dimer. These antigens are featured in various COVID-19 vaccine formats, including SOBERANA 01 and the licensed SOBERANA 02, and SOBERANA Plus. Our approach involves expressing RBD (319-541)-His6 in Chinese hamster ovary (CHO)-K1 cells, generating and characterizing oligoclones, and selecting the best RBD-producing clones. Critical parameters such as copper supplementation in the culture medium and cell viability influenced the yield of RBD dimer. The purification of RBD involved standard immobilized metal ion affinity chromatography (IMAC), ion exchange chromatography, and size exclusion chromatography. Our findings suggest that copper can improve IMAC performance. Efficient RBD production was achieved using small-scale bioreactor cell culture (2 L). The two RBD forms - monomeric and dimeric RBD - were also produced on a large scale (500 L). This study represents the first large-scale application of perfusion culture for the production of RBD antigens. We conducted a thorough analysis of the purified RBD antigens, which encompassed primary structure, protein integrity, N-glycosylation, size, purity, secondary and tertiary structures, isoform composition, hydrophobicity, and long-term stability. Additionally, we investigated RBD-ACE2 interactions, in vitro ACE2 recognition of RBD, and the immunogenicity of RBD antigens in mice. We have determined that both the monomeric and dimeric RBD antigens possess the necessary quality attributes for vaccine production. By enabling the customizable production of both RBD forms, this unified manufacturing process provides the required flexibility to adapt rapidly to the ever-changing demands of emerging SARS-CoV-2 variants and different COVID-19 vaccine platforms.

11.
Sheng Wu Gong Cheng Xue Bao ; 39(8): 3364-3378, 2023 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-37622366

RESUMEN

With various diseases ravaging internationally, the demands for recombinant adenoviral vector (Adv) vaccines have increased dramatically. To meet the demand for Adv vaccine, development of a new cell culture process is an effective strategy. Applying hyperosmotic stress in cells before virus infection could increase the yield of Adv in batch culture mode. Emerging perfusion culture can significantly increase the yield of Adv as well. Therefore, combining the hyperosmotic stress process with perfusion culture is expected to improve the yield of Adv at high cell density. In this study, a shake flask combined with a semi-perfusion culture was used as a scaled-down model for bioreactor perfusion culture. Media with osmotic pressure ranging from 300 to 405 mOsm were used to study the effect of hyperosmotic stress on cell growth and Adv production. The results showed that using a perfusion culture process with a hyperosmotic pressure medium (370 mOsm) during the cell growth phase and an isosmotic pressure medium (300 mOsm) during the virus production phase effectively increased the yield of Adv. This might be due to the increased expression of HSP70 protein during the late phases of virus replication. The Adv titer in a bioreactor with such a process reached 3.2×1010 IFU/mL, three times higher than that of the traditional perfusion culture process. More importantly, this is the first time that a strategy of combining the hyperosmotic stress process with perfusion culture is applied to the production of Adv in HEK 293 cells. It also reveals the reason why the hyperosmotic stress process increased the yield of Adv, which may facilitate the process optimization of for producing other Adv in HEK 293 cells.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Vectores Genéticos , Humanos , Células HEK293 , Vectores Genéticos/genética , Reactores Biológicos , Perfusión
12.
Biofabrication ; 15(4)2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37487489

RESUMEN

Organ transplantation is a definitive treatment for endocrine disorders, but donor shortages limit the use of this technique. The development of regenerative therapies would revolutionize the treatment of endocrine disorders. As is the case for harvested organs, the ideal bioengineered graft would comprise vascularized endocrine tissue, contain blood vessels that could be anastomosed to host vessels, have stable blood flow, and be suitable for transplantation into various sites. Here, we describe a transplantable endocrine tissue graft that was fabricated byex vivoperfusion of tricultured cell sheets (isletß-cells, vascular endothelial cells (vECs), and mesenchymal stem cells (MSCs)) on a vascularized tissue flap ofin vivoorigin. The present study has three key findings. First, mild hypothermic conditions enhanced the success ofex vivoperfusion culture. Specifically, graft construction failed at 37 °C but succeeded at 32 °C (mild hypothermia), and endocrine tissue fabricated under mild hypothermia contained aggregations of isletß-cells surrounded by dense vascular networks. Second, the construction of transplantable endocrine tissue byex vivoperfusion culture was better achieved using a vascular flap (VF) than a muscle flap. Third, the endocrine tissue construct generated using a VF could be transplanted into the rat by anastomosis of the graft artery and vein to host blood vessels, and the graft secreted insulin into the host's circulatory system for at least two weeks after transplantation. Endocrine tissues bioengineered using these techniques potentially could be used as novel endocrine therapies.


Asunto(s)
Hipotermia , Ingeniería de Tejidos , Ratas , Animales , Ingeniería de Tejidos/métodos , Células Endoteliales , Bioingeniería , Vasos Sanguíneos
13.
Cells ; 12(5)2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36899943

RESUMEN

Precision-cut tumor slices (PCTS) maintain tissue heterogeneity concerning different cell types and preserve the tumor microenvironment (TME). Typically, PCTS are cultured statically on a filter support at an air-liquid interface, which gives rise to intra-slice gradients during culture. To overcome this problem, we developed a perfusion air culture (PAC) system that can provide a continuous and controlled oxygen medium, and drug supply. This makes it an adaptable ex vivo system for evaluating drug responses in a tissue-specific microenvironment. PCTS from mouse xenografts (MCF-7, H1437) and primary human ovarian tumors (primary OV) cultured in the PAC system maintained the morphology, proliferation, and TME for more than 7 days, and no intra-slice gradients were observed. Cultured PCTS were analyzed for DNA damage, apoptosis, and transcriptional biomarkers for the cellular stress response. For the primary OV slices, cisplatin treatment induced a diverse increase in the cleavage of caspase-3 and PD-L1 expression, indicating a heterogeneous response to drug treatment between patients. Immune cells were preserved throughout the culturing period, indicating that immune therapy can be analyzed. The novel PAC system is suitable for assessing individual drug responses and can thus be used as a preclinical model to predict in vivo therapy responses.


Asunto(s)
Fenómenos Biológicos , Neoplasias Ováricas , Femenino , Humanos , Ratones , Animales , Perfusión , Microambiente Tumoral
14.
Biotechnol Prog ; 39(4): e3340, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970759

RESUMEN

Perfusion culture is often performed with micro-sparger to fulfill the high oxygen demand from the densified cells. Protective additive Pluronic F-68 (PF-68) is widely used to mitigate the adverse effect in cell viability from micro-sparging. In this study, different PF-68 retention ratio in alternating tangential filtration (ATF) columns was found to be crucial for cell performance of different perfusion culture modes. The PF-68 in the perfusion medium was found retained inside the bioreactor when exchanged through ATF hollow fibers with a small pore size (50 kD). The accumulated PF-68 could provide sufficient protection for cells under micro-sparging. On the other hand, with large-pore-size (0.2 µm) hollow fibers, PF-68 could pass through the ATF filtration membranes with little retention, and consequently led to compromised cell growth. To overcome the defect, a PF-68 feeding strategy was designed and successfully verified on promoting cell growth with different Chinese hamster ovary (CHO) cell lines. With PF-68 feeding, enhancements were observed in both viable cell densities (20%-30%) and productivity (~30%). A threshold PF-68 concentration of 5 g/L for high-density cell culture (up to 100 × 106 cells/mL) was also proposed and verified. The additional PF-68 feeding was not observed to affect product qualities. By designing the PF-68 concentration of perfusion medium to or higher than the threshold level, a similar cell growth enhancement was also achieved. This study systematically investigated the protecting role of PF-68 in intensified CHO cell cultures, shedding a light on the optimization of perfusion cultures through the control of protective additives.


Asunto(s)
Reactores Biológicos , Poloxámero , Cricetinae , Animales , Cricetulus , Células CHO , Poloxámero/farmacología , Técnicas de Cultivo de Célula , Perfusión
15.
Front Bioeng Biotechnol ; 11: 1112349, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36741761

RESUMEN

The perfusion medium is critical in maintaining high cell concentration in cultures for the production of monoclonal antibody by Chinese hamster ovary cells. In this study, the effects of perfusion culture strategies when using different media on the process stability, product titer, and product quality were investigated in 3-L bioreactor. The results indicated that continuous perfusion could maintain higher levels of cell density, product titer, and quality in comparison with those of the intermittent perfusion culture. Next, the perfusion culture conditions with different perfusion rates and temperature reduction methods were further optimized. When combining the high perfusion rates and delayed reduction of culture temperature at day 6, the product titer reached a higher level of 16.19 g/L with the monomer relative abundant of 97.6%. In this case, the main peak of the product reached 56.3% and the total N-glycans ratio was 95.2%. To verify the effectiveness of the optimized perfusion culture in a larger scale, a 200-L bioreactor was used to perform and the final product titer reached the highest level of 16.79 g/L at day 16. Meanwhile, the product quality (monomer abundant of 97.6%, main peak of 56.3%, and N-glycans ratio of 96.5%) could also be well maintained. This study provided some guidance for the high-efficient production of monoclonal antibody by CHO cells via optimized perfusion culture strategy.

16.
J Biosci Bioeng ; 135(1): 79-85, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36253250

RESUMEN

This paper reports perfusion culture of human umbilical vein endothelial cells (HUVECs) on a microporous membrane in a pressure-driven microphysiological system (PD-MPS), which we developed previously as a multi-throughput perfusion culture platform. We designed fluidic culture unit with microporous membrane to culture HUVECs under fluidic shear stress and constructed a perfusion culture model in the PD-MPS platform. Four fluidic culture units were arranged in the microplate-sized device, which enables four-throughput assay for characterization of HUVECs under flow. Medium flow was generated above and below the membrane by sequential pneumatic pressure to apply physiological shear stress to HUVECs. HUVECs exhibited aligned morphology to the direction of the flow with shear stress of 11.5-17.7 dyn/cm2 under the flow condition, while they randomly aligned under static culture condition in a 6 well plate. We also observed 3.3- and 5.0-fold increase in the expression levels of the thrombomodulin and endothelial nitric oxide synthase mRNAs, respectively, under the flow condition in the PD-MPS compared to the static culture in 6 well plate. We also observed actin filament aligned to the direction of flow in HUVECs cultured under the flow condition.


Asunto(s)
Citoesqueleto de Actina , Sistemas Microfisiológicos , Humanos , Células Endoteliales de la Vena Umbilical Humana , ARN Mensajero , Perfusión , Estrés Mecánico , Células Cultivadas
17.
J Biosci Bioeng ; 135(2): 151-159, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36586792

RESUMEN

Gravity-driven microfluidics, which utilizes gravity force to drive liquid flow, offers portability and multi-condition setting flexibility because they do not require pumps or connection tubes to drive the flow. However, because the flow rate decreases with time in gravity-driven microfluidics, it is not suitable for stem cell experiments, which require long-term (at least a day) stability. In this study, gravity-driven microfluidics and a slow-tilting table were developed to culture cells under constant unidirectional perfusion. The microfluidic device was placed on a slow-tilting table, which tilts unidirectionally at a rate of approximately 7° per day to compensate for the reduction in the flow rate. Computational simulations showed that the pulsation of the flow arising from the stepwise movement of the table was less than 0.2%, and the flow was laminar. Hydrophilization of the tanks increased the flow rate, which is consistent with the theoretical values. We showed that vitronectin is better than laminin 511 fragments as a coating material for adhering human induced pluripotent stem cells on a microchamber made of polydimethylsiloxane, and succeeded in culturing the cells for 3 days. It is believed that the system offers easy-to-use cell culture tools, such as conventional multiwell culture vessels, and enables the control of the cell microenvironment.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Microfluídica , Técnicas de Cultivo de Célula , Perfusión , Dispositivos Laboratorio en un Chip
18.
Graefes Arch Clin Exp Ophthalmol ; 261(5): 1359-1368, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36565327

RESUMEN

BACKGROUND: Glaucoma is a blinding disease largely caused by dysregulation of outflow through the trabecular meshwork (TM), resulting in elevated intraocular pressure (IOP). We hypothesized that transplanting TM cells into a decellularized, tissue-engineered anterior segment eye culture could restore the outflow structure and function. METHODS: Porcine eyes were decellularized with freeze-thaw cycles and perfusion of surfactant. We seeded control scaffolds with CrFK cells transduced with lentiviral vectors to stably express eGFP and compared them to scaffolds seeded with primary TM cells as well as to normal, unaltered eyes. We tracked the repopulation behavior, performed IOP maintenance challenges, and analyzed the histology. RESULTS: Transplanted cells localized to the TM and progressively infiltrated the extracellular matrix, reaching a distribution comparable to normal, unaltered eyes. After a perfusion rate challenge to mimic a glaucomatous pressure elevation, transplanted and normal eyes reestablished a normal intraocular pressure (transplanted = 16.5 ± 0.9 mmHg, normal = 16.9 ± 0.9). However, eyes reseeded with eGFP-expressing CrFK cells could not regulate IOP, remaining high and unstable (27.0 ± 6.2 mmHg) instead. CONCLUSION: Tissue-engineered anterior segment scaffolds can serve as readily available, scalable ocular perfusion cultures. This could reduce dependency on scarce donor globes in outflow research and may allow engineering perfusion cultures with specific geno- and phenotypes.


Asunto(s)
Humor Acuoso , Glaucoma , Porcinos , Animales , Técnicas de Cultivo de Órganos , Humor Acuoso/fisiología , Presión Intraocular , Malla Trabecular/patología , Glaucoma/patología , Segmento Anterior del Ojo/patología
19.
Chinese Journal of Biotechnology ; (12): 3364-3378, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1007963

RESUMEN

With various diseases ravaging internationally, the demands for recombinant adenoviral vector (Adv) vaccines have increased dramatically. To meet the demand for Adv vaccine, development of a new cell culture process is an effective strategy. Applying hyperosmotic stress in cells before virus infection could increase the yield of Adv in batch culture mode. Emerging perfusion culture can significantly increase the yield of Adv as well. Therefore, combining the hyperosmotic stress process with perfusion culture is expected to improve the yield of Adv at high cell density. In this study, a shake flask combined with a semi-perfusion culture was used as a scaled-down model for bioreactor perfusion culture. Media with osmotic pressure ranging from 300 to 405 mOsm were used to study the effect of hyperosmotic stress on cell growth and Adv production. The results showed that using a perfusion culture process with a hyperosmotic pressure medium (370 mOsm) during the cell growth phase and an isosmotic pressure medium (300 mOsm) during the virus production phase effectively increased the yield of Adv. This might be due to the increased expression of HSP70 protein during the late phases of virus replication. The Adv titer in a bioreactor with such a process reached 3.2×1010 IFU/mL, three times higher than that of the traditional perfusion culture process. More importantly, this is the first time that a strategy of combining the hyperosmotic stress process with perfusion culture is applied to the production of Adv in HEK 293 cells. It also reveals the reason why the hyperosmotic stress process increased the yield of Adv, which may facilitate the process optimization of for producing other Adv in HEK 293 cells.


Asunto(s)
Humanos , Células HEK293 , Vectores Genéticos/genética , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Perfusión
20.
Int J Bioprint ; 8(4): 619, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36404784

RESUMEN

Vessel-on-a-chips, which can be used to study microscale fluid dynamics, tissue-level biological molecules delivery and intercellular communication under favorable three-dimensional (3D) extracellular matrix microenvironment, are increasingly gaining traction. However, not many of them can allow for long-term perfusion and easy observation of angiogenesis process. Since angiogenesis is necessary for the expansion of tumor, antiangiogenic drugs play a significant role in cancer treatment. In this study, we established an innovative and reliable antiangiogenic drug screening chip that was highly modularly integrated for long-term perfusion (up to 10 days depending on the hydrogel formula) and real-time monitoring. To maintain an unobstructed flow of cell-laden tubes for subsequent perfusion culture on the premise of excellent bioactivities, a polycaprolactone stent inspired by coronary artery stents was introduced to hold up the tubular lumen from the inside, while the perfusion chip was also elaborately designed to allow for convenient observation. After 3 days of perfusion screening, distinct differences in human umbilical vein endothelial cell sprouting were observed for a gradient of concentrations of bevacizumab, which pointed to the effectiveness and reliability of the drug screening perfusion system. Overall, a perfusion system for antiangiogenic drug screening was developed, which can not only conduct drug evaluation, but also be potentially useful in other vessel-mimicking scenarios in the area of tissue engineering, drug screening, pharmacokinetics, and regenerative medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA