Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Mass Spectrom ; 59(6): e5040, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38736147

RESUMEN

In addition to providing critical knowledge of the accurate mass of ions, ion mobility-mass spectrometry (IM-MS) delivers complementary data relating to the conformation and size of ions in the form of an ion mobility spectrum and derived parameters, namely, the ion's mobility (K) and the IM-derived collision cross section (CCS). However, the maximum amount of information obtained in IM-MS measurements is not currently transferred into analytical databases including the full mobility spectra (CCS distributions) as well as capturing of additional ion species (e.g., adducts) into the same compound entry. We introduce CCSfind, a new tool for building comprehensive databases from experimental IM-MS measurements of small molecules. CCSfind allows predicted ion species to be chosen for input chemical formulae, which are then targeted by CCSfind after parsing open source mzML input files to provide a unified set of results within a single data processing step. CCSfind can handle both chromatographically separated isomers and IM separation of isomeric ions (e.g., "protomers" or conformers of the same ion species) with simple user control over the output for new database entries in SQL format. Files of up to 1 GB can be processed in less than 2 min on a desktop computer with 32 GB RAM with computational time scaling linearly with the size of the input mzML file or the number of input molecular formulae. Results are manually reviewed, annotated with experimental settings, before committing the database where the full dataset can be retrieved.

2.
Chinese Journal of Analytical Chemistry ; (12): 130-137,中插44-中插46, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1017637

RESUMEN

Peak picking is one of the essential steps in non-targeted metabolomics data preprocessing based on liquid chromatography-mass spectrometry.Among various peak-picking algorithms,centWave algorithm based on continuous wavelet transform has been widely adopted in high-resolution mass spectrometry.In this study,the optimization effects of two centWave parameter optimization algorithms,IPO and centWave Sweep,were compared.Two datasets including metabolite standards and urine were used for comprehensive evaluation of these two algorithms with respect to three indicators:good peak shape ratio,reliable peak ratio,and repeatable peak ratio.To quickly and accurately distinguish good and bad peak shapes,three ensemble learning algorithms,random forest,adaboost and gradient boosting decision tree,were selected to establish a model for distinguishing chromatographic peak shape.Finally,according to the accuracy and F1 score,random forest was selected to establish a discrimination model(Accuracy 93.5%,F1 score 0.938).Compared with recommended parameters of XCMS Online,the proportion of reliable peaks and the proportion of repeatable peaks of two parameter optimization algorithms were improved in different datasets.However,when it came to the proportion of peaks with good shape,there was no significant difference between the optimized parameters and the parameters recommended by XCMS Online in different datasets.Furthermore,all three parameter settings resulted in relatively low proportions of peaks with good shape.The results indicated that the current parameter optimization algorithm was unable to improve the proportion of peaks with good shape.An excessive number of bad shape peaks could not only decrease the statistical power of analysis but also generate false positive results.Therefore,it was critical to perform additional confirmation of potential markers in the practical application of metabolomics researches.

3.
Chemosphere ; 335: 139032, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37236275

RESUMEN

Although spectroscopic methods provide a fast and cost-effective means of monitoring dissolved organic carbon (DOC) in natural and engineered water systems, the prediction accuracy of these methods is limited by the complex relationship between optical properties and DOC concentration. In this study, we developed DOC prediction models using multiple linear/log-linear regression and feedforward artificial neural network (ANN) and investigated the effectiveness of spectroscopic properties, such as fluorescence intensity and UV absorption at 254 nm (UV254), as predictors. Optimum predictors were identified based on correlation analysis to construct models using single and multiple predictors. We compared the peak-picking and parallel factor analysis (PARAFAC) methods for selecting appropriate fluorescence wavelengths. Both methods had similar prediction capability (p-values >0.05), suggesting PARAFAC was not necessary for choosing fluorescence predictors. Fluorescence peak T was identified as a more accurate predictor than UV254. Combining UV254 and multiple fluorescence peak intensities as predictors further improved the prediction capability of the models. The ANN models outperformed the linear/log-linear regression models with multiple predictors, achieving higher prediction accuracy (peak-picking: R2 = 0.8978, RMSE = 0.3105 mg/L; PARAFAC: R2 = 0.9079, RMSE = 0.2989 mg/L). These findings suggest the potential to develop a real-time DOC concentration sensor based on optical properties using an ANN for signal processing.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Materia Orgánica Disuelta , Espectrometría de Fluorescencia/métodos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Agua
4.
J Magn Reson ; 351: 107429, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37099854

RESUMEN

In NMR-based untargeted metabolomic studies, 1H NMR spectra are usually divided into equal bins/buckets to diminish the effects of peak shift caused by sample status or instrument instability, and to reduce the number of variables used as input for the multivariate statistical analysis. It was noticed that the peaks near bin boundaries may cause significant changes in integral values of adjacent bins, and the weaker peak may be obscured if it is allocated in the same bin with intense peaks. Several efforts have been taken to improve the performance of binning. Here we propose an alternative method, named P-Bin, based on the combination of the classic peak-picking and binning procedures. The location of each peak defined by peak-picking is used as the center of the individual bin. P-Bin is expected to keep all spectral information associated with the peaks and significantly reduce the data size as the spectral regions without peaks are not considered. In addition, both peak-picking and binning are routine procedures, making P-Bin easy to be implemented. To verify the performance, two sets of experimental data from human plasma and Ganoderma lucidum (G. lucidum) extracts were processed using the conventional binning method and the proposed method, before the principal component analysis (PCA) and the orthogonal projection to latent structures discriminant analysis (OPLS-DA). The results indicate that the proposed method has improved both the clustering performance of PCA score plots and the interpretability of OPLS-DA loading plots, and P-Bin could be an improved version of data preparation for metabonomic study.


Asunto(s)
Imagen por Resonancia Magnética , Metabolómica , Humanos , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos , Análisis de Componente Principal
5.
Brief Bioinform ; 24(3)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37068309

RESUMEN

Imaging mass spectrometry (IMS) is one of the powerful tools in spatial metabolomics for obtaining metabolite data and probing the internal microenvironment of organisms. It has dramatically advanced the understanding of the structure of biological tissues and the drug treatment of diseases. However, the complexity of IMS data hinders the further acquisition of biomarkers and the study of certain specific activities of organisms. To this end, we introduce an artificial intelligence tool, SmartGate, to enable automatic peak selection and spatial structure identification in an iterative manner. SmartGate selects discriminative m/z features from the previous iteration by differential analysis and employs a graph attention autoencoder model to perform spatial clustering for tissue segmentation using the selected features. We applied SmartGate to diverse IMS data at multicellular or subcellular spatial resolutions and compared it with four competing methods to demonstrate its effectiveness. SmartGate can significantly improve the accuracy of spatial segmentation and identify biomarker metabolites based on tissue structure-guided differential analysis. For multiple consecutive IMS data, SmartGate can effectively identify structures with spatial heterogeneity by introducing three-dimensional spatial neighbor information.


Asunto(s)
Inteligencia Artificial , Metabolómica , Metabolómica/métodos , Biomarcadores
6.
J Proteome Res ; 21(6): 1485-1494, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35579321

RESUMEN

Generating comprehensive and high-fidelity metabolomics data matrices from LC/HRMS data remains to be extremely challenging for population-scale large studies (n > 200). Here, we present a new data processing pipeline, the Intrinsic Peak Analysis (IDSL.IPA) R package (https://ipa.idsl.me), to generate such data matrices specifically for organic compounds. The IDSL.IPA pipeline incorporates (1) identifying potential 12C and 13C ion pairs in individual mass spectra; (2) detecting and characterizing chromatographic peaks using a new sensitive and versatile approach to perform mass correction, peak smoothing, baseline development for local noise measurement, and peak quality determination; (3) correcting retention time and cross-referencing peaks from multiple samples by a dynamic retention index marker approach; (4) annotating peaks using a reference database of m/z and retention time; and (5) accelerating data processing using a parallel computation of the peak detection and alignment steps for larger studies. This pipeline has been successfully evaluated for studies ranging from 200 to 1600 samples. By specifically isolating high quality and reliable signals pertaining to carbon-containing compounds in untargeted LC/HRMS data sets from larger studies, IDSL.IPA opens new opportunities for discovering new biological insights in the population-scale metabolomics and exposomics projects. The package is available in the R CRAN repository at https://cran.r-project.org/package=IDSL.IPA.


Asunto(s)
Metabolómica , Programas Informáticos , Cromatografía Liquida/métodos , Espectrometría de Masas , Metabolómica/métodos , Compuestos Orgánicos
7.
J Biomol NMR ; 76(3): 49-57, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35389128

RESUMEN

Rapid progress in machine learning offers new opportunities for the automated analysis of multidimensional NMR spectra ranging from protein NMR to metabolomics applications. Most recently, it has been demonstrated how deep neural networks (DNN) designed for spectral peak picking are capable of deconvoluting highly crowded NMR spectra rivaling the facilities of human experts. Superior DNN-based peak picking is one of a series of critical steps during NMR spectral processing, analysis, and interpretation where machine learning is expected to have a major impact. In this perspective, we lay out some of the unique strengths as well as challenges of machine learning approaches in this new era of automated NMR spectral analysis. Such a discussion seems timely and should help define common goals for the NMR community, the sharing of software tools, standardization of protocols, and calibrate expectations. It will also help prepare for an NMR future where machine learning and artificial intelligence tools will be common place.


Asunto(s)
Algoritmos , Inteligencia Artificial , Humanos , Aprendizaje Automático , Resonancia Magnética Nuclear Biomolecular/métodos , Programas Informáticos
8.
J Magn Reson ; 333: 107104, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34801821

RESUMEN

Accurate peak detection is an essential component of many NMR tasks such as peak alignment, compound identification, and global spectral deconvolution. However, current peak detection approaches are generally limited by their ability to deal with spectral overlap, which has a deleterious effect on downstream data processing. In this work, we present the use of an adaptive apodization strategy that improves the detection of highly overlapping peaks. Sensitivity enhancement is used to identify general regions of interest and resolution enhancement is used to separate overlapping peaks, with parameters for both calculated directly from the data. Further limits on peak width help to reduce false positives. The method proposed in this work has been implemented in an open-source R package called rnmrfind that is available for download on GitHub (https://github.com/ssokolen/rnmrfind). A set of default parameters have been chosen to provide effective peak detection while keeping false positives to a minimum; however, application-specific tuning is possible through the modification of minimum peak width at half height (in Hz) and noise cutoff threshold (as a factor of estimated standard deviation). Comparison to existing packages rNMR and speaq on a series of 1H NMR spectra demonstrates improved peak resolution with little to no apparent drawbacks.

9.
J Am Soc Mass Spectrom ; 32(7): 1716-1724, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34152763

RESUMEN

Two-dimensional mass spectrometry (2DMS) is a new, and theoretically ideal, data-independent analysis tool, which allows the characterization of a complex mixture and was used in the bottom-up analysis of IgG1 for the identification of post-translational modifications. The new peak picking algorithm allows the distinction between chimeric peaks in proteomics. In this application, the processing of 2DMS data correlates fragments to their corresponding precursors, with fragments from precursors which are <0.1 m/z at m/z 840 easily resolved, without the need for quadrupole or chromatographic separation.


Asunto(s)
Inmunoglobulina G/análisis , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Humanos , Inmunoglobulina G/química , Procesamiento Proteico-Postraduccional
10.
J Biosci Bioeng ; 131(2): 207-212, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33051155

RESUMEN

Finding peaks in chromatograms and determining their start and end points (peak picking) is a core task in chromatography based biotechnology. Construction of peak-picking neural networks by deep learning was, however, hampered from the preparation of exact peak-picked or "labeled" chromatograms since the exact start and end points were often unclear in overlapping peaks in real chromatograms. We present a design of a fake chromatogram generator, along with a method for deep learning of peak-picking neural networks. Fake chromatograms were generated by generation of fake peaks, random sampling of peak positions from feature distributions, and merging with real blank sample chromatograms. Information on the exact start and end points, as labeled on the fake chromatograms, were effective for training and evaluating peak-picking neural networks. The peak-picking neural networks constructed herein outperformed conventional peak-picking software and showed comparable performance with that of experienced operators for processing the widely targeted metabolome data. Results of this study indicate that generation of fake chromatograms would be crucial for developing peak-picking neural networks and a key technology for further improvement of peak picking neural networks.


Asunto(s)
Aprendizaje Profundo , Metabolómica/métodos , Cromatografía , Programas Informáticos
11.
Beilstein J Org Chem ; 16: 2087-2099, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32952725

RESUMEN

The accurate assessment of antibody glycosylation during bioprocessing requires the high-throughput generation of large amounts of glycomics data. This allows bioprocess engineers to identify critical process parameters that control the glycosylation critical quality attributes. The advances made in protocols for capillary electrophoresis-laser-induced fluorescence (CE-LIF) measurements of antibody N-glycans have increased the potential for generating large datasets of N-glycosylation values for assessment. With large cohorts of CE-LIF data, peak picking and peak area calculations still remain a problem for fast and accurate quantitation, despite the presence of internal and external standards to reduce misalignment for the qualitative analysis. The peak picking and area calculation problems are often due to fluctuations introduced by varying process conditions resulting in heterogeneous peak shapes. Additionally, peaks with co-eluting glycans can produce peaks of a non-Gaussian nature in some process conditions and not in others. Here, we describe an approach to quantitatively and qualitatively curate large cohort CE-LIF glycomics data. For glycan identification, a previously reported method based on internal triple standards is used. For determining the glycan relative quantities our method uses a clustering algorithm to 'divide and conquer' highly heterogeneous electropherograms into similar groups, making it easier to define peaks manually. Open-source software is then used to determine peak areas of the manually defined peaks. We successfully applied this semi-automated method to a dataset (containing 391 glycoprofiles) of monoclonal antibody biosimilars from a bioreactor optimization study. The key advantage of this computational approach is that all runs can be analyzed simultaneously with high accuracy in glycan identification and quantitation and there is no theoretical limit to the scale of this method.

12.
J Proteomics ; 225: 103852, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32531407

RESUMEN

MALDI mass spectrometry imaging (MALDI MSI) is a spatially resolved analytical tool for biological tissue analysis by measuring mass-to-charge ratios of ionized molecules. With increasing spatial and mass resolution of MALDI MSI data, appropriate data analysis and interpretation is getting more and more challenging. A reliable separation of important peaks from noise (aka peak detection) is a prerequisite for many subsequent processing steps and should be as accurate as possible. We propose a novel peak detection algorithm based on sparse frame multipliers, which can be applied to raw MALDI MSI data without prior preprocessing. The accuracy is evaluated on a simulated data set in comparison with state-of-the-art algorithms. These results also show the proposed method's robustness to baseline and noise effects. In addition, the method is evaluated on real MALDI-TOF data sets, whereby spatial information can be included in the peak picking process. SIGNIFICANCE: The field of proteomics, in particular MALDI Imaging, encompasses huge amounts of data. The processing and preprocessing of this data in order to segment or classify spatial structures of certain peptides or isotope patterns can hence be cumbersome and includes several independent processing steps. In this work, we propose a simple peak-picking algorithm to quickly analyze large raw MALDI Imaging data sets, which has a better sensitivity than current state-of-the-art algorithms. Further, it is possible to get an overall overview of the entire data set showing the most significant and spatially localized peptide structures and, hence, contributes all data driven evaluation of MALDI Imaging data.


Asunto(s)
Algoritmos , Proteómica , Diagnóstico por Imagen , Péptidos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
Metabolites ; 10(4)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331455

RESUMEN

Non-targeted mass spectrometry (MS) has become an important method over recent years in the fields of metabolomics and environmental research. While more and more algorithms and workflows become available to process a large number of non-targeted data sets, there still exist few manually evaluated universal test data sets for refining and evaluating these methods. The first step of non-targeted screening, peak detection and refinement of it is arguably the most important step for non-targeted screening. However, the absence of a model data set makes it harder for researchers to evaluate peak detection methods. In this Data Descriptor, we provide a manually checked data set consisting of 255,000 EICs (5000 peaks randomly sampled from across 51 samples) for the evaluation on peak detection and gap-filling algorithms. The data set was created from a previous real-world study, of which a subset was used to extract and manually classify ion chromatograms by three mass spectrometry experts. The data set consists of the converted mass spectrometry files, intermediate processing files and the central file containing a table with all important information for the classified peaks.

14.
J Proteome Res ; 19(5): 1953-1964, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32216286

RESUMEN

Extracted ion chromatograms (XIC) are the fundamental signal unit in mass spectrometry. There are many algorithms for analyzing raw mass spectrometry data tasked with distinguishing real isotopic signals from noise. While one or more of the available algorithms are typically chained together for end-to-end mass spectrometry analysis, analysis of each algorithm in isolation provides a specific measurement of the strengths and weaknesses of each approach. Though qualitative opinions on extraction algorithm performance abound, quantitative performance has never been publicly ascertained. Quantitative evaluation has not occurred partly due to the lack of an available quantitative ground truth MS1 data set. Using a recently published, manually extracted XICs as ground truth data, we evaluate the quality of popular XIC algorithms, including MaxQuant, MZMine2, and several methods from XCMS. The manually curated data set comprises 48 human proteins stratified over 6 abundance orders of magnitude. Signals in the sample were manually curated into XIC using a commercial tool for visually identifying XIC and isotopic envelopes. XIC algorithms were applied to the manually extracted data using a grid search of possible parameters. Performance varied greatly between different parameter settings, though nearly all algorithms with parameter settings optimized with respect to the number of true positives recovered over 10 000 XICs.


Asunto(s)
Algoritmos , Humanos , Espectrometría de Masas/métodos
15.
Methods Mol Biol ; 2104: 25-48, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31953811

RESUMEN

The informatics pipeline for making sense of untargeted LC-MS or GC-MS data starts with preprocessing the raw data. Results from data preprocessing undergo statistical analysis and subsequently mapped to metabolic pathways for placing untargeted metabolomics data in the biological context. ADAP is a suite of computational algorithms that has been developed specifically for preprocessing LC-MS and GC-MS data. It consists of two separate computational workflows that extract compound-relevant information from raw LC-MS and GC-MS data, respectively. Computational steps include construction of extracted ion chromatograms, detection of chromatographic peaks, spectral deconvolution, and alignment. The two workflows have been incorporated into the cross-platform and graphical MZmine 2 framework and ADAP-specific graphical user interfaces have been developed for using ADAP with ease. This chapter summarizes the algorithmic principles underlying key steps in the two workflows and illustrates how to apply ADAP to preprocess LC-MS and GC-MS data.


Asunto(s)
Biología Computacional/métodos , Interpretación Estadística de Datos , Metabolómica , Programas Informáticos , Algoritmos , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Humanos , Espectrometría de Masas , Metabolómica/métodos , Interfaz Usuario-Computador , Flujo de Trabajo
16.
Environ Pollut ; 255(Pt 1): 113223, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31541811

RESUMEN

Environmental contaminant monitoring traditionally relies on targeted analysis, and very few tools are currently available to monitor "unexpected" or "unknown" compounds. In the present study, a non-targeted workflow (suspect screening) was developed to investigate plastic-related chemicals and other environmental contaminants in a top predator freshwater fish species, the northern pike, from the St. Lawrence River, Canada. Samples were extracted using sonication-assisted liquid extraction and analyzed by high performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (HPLC-QTOF-MS). Ten bisphenol compounds were used to test the analytical performances of the method, and satisfactory results were obtained in terms of instrumental linearity (r2 > 0.97), recoveries, (86.53-119.32%), inter-day precision and method detection limits. The non-targeted workflow data processing parameters were studied, and the peak height filters (peak filtering step) were found to influence significantly the capacity to detect and identify trace chemicals in pike muscle extracts. None of the ten bisphenol analogues were detected in pike extracts suggesting the absence of accumulation for these chemicals in pike muscle. However, the non-targeted workflow enabled the identification of diethyl phthalate (DEP) and perfluorooctanesulfonic acid (PFOS) in pike extracts. This approach thus can be also applied to various contaminants in other biological matrices and environmental samples.


Asunto(s)
Esocidae/metabolismo , Plásticos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Ácidos Alcanesulfónicos , Animales , Compuestos de Bencidrilo , Canadá , Monitoreo del Ambiente/métodos , Peces , Fluorocarburos , Agua Dulce , Fenoles , Plásticos/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis
17.
BMC Bioinformatics ; 20(1): 217, 2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31035918

RESUMEN

BACKGROUND: Lipidomics, the comprehensive measurement of lipids within a biological system or substrate, is an emerging field with significant potential for improving clinical diagnosis and our understanding of health and disease. While lipids diverse biological roles contribute to their clinical utility, the diversity of lipid structure and concentrations prove to make lipidomics analytically challenging. Without internal standards to match each lipid species, researchers often apply individual internal standards to a broad range of related lipids. To aid in standardizing and automating this relative quantitation process, we developed LipidMatch Normalizer (LMN) http://secim.ufl.edu/secim-tools/ which can be used in most open source lipidomics workflows. RESULTS: LMN uses a ranking system (1-3) to assign lipid standards to target analytes. A ranking of 1 signifies that both the lipid class and adduct of the internal standard and target analyte match, while a ranking of 3 signifies that neither the adduct or class match. If multiple internal standards are provided for a lipid class, standards with the closest retention time to the target analyte will be chosen. The user can also signify which lipid classes an internal standard represents, for example indicating that ether-linked phosphatidylcholine can be semi-quantified using phosphatidylcholine. LMN is designed to work with any lipid identification software and feature finding software, and in this study is used to quantify lipids in NIST SRM 1950 human plasma annotated using LipidMatch and MZmine. CONCLUSIONS: LMN can be integrated into an open source workflow which completes all data processing steps including feature finding, annotation, and quantification for LC-MS/MS studies. Using LMN we determined that in certain cases the use of peak height versus peak area, certain adducts, and negative versus positive polarity data can have major effects on the final concentration obtained.


Asunto(s)
Lípidos/análisis , Programas Informáticos , Algoritmos , Cromatografía Líquida de Alta Presión , Humanos , Lípidos/química , Espectrometría de Masas en Tándem
18.
Methods Mol Biol ; 1738: 27-39, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29654581

RESUMEN

Liquid chromatography-mass spectrometry (LC-MS) untargeted experiments require complex chemometrics strategies to extract information from the experimental data. Here we discuss "data preprocessing", the set of procedures performed on the raw data to produce a data matrix which will be the starting point for the subsequent statistical analysis. Data preprocessing is a crucial step on the path to knowledge extraction, which should be carefully controlled and optimized in order to maximize the output of any untargeted metabolomics investigation.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Metabolómica/métodos , Programas Informáticos , Animales , Biomarcadores/análisis , Interpretación Estadística de Datos , Humanos
19.
BMC Bioinformatics ; 19(1): 123, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29621971

RESUMEN

BACKGROUND: Thanks to a reasonable cost and simple sample preparation procedure, linear MALDI-ToF spectrometry is a growing technology for clinical microbiology. With appropriate spectrum databases, this technology can be used for early identification of pathogens in body fluids. However, due to the low resolution of linear MALDI-ToF instruments, robust and accurate peak picking remains a challenging task. In this context we propose a new peak extraction algorithm from raw spectrum. With this method the spectrum baseline and spectrum peaks are processed jointly. The approach relies on an additive model constituted by a smooth baseline part plus a sparse peak list convolved with a known peak shape. The model is then fitted under a Gaussian noise model. The proposed method is well suited to process low resolution spectra with important baseline and unresolved peaks. RESULTS: We developed a new peak deconvolution procedure. The paper describes the method derivation and discusses some of its interpretations. The algorithm is then described in a pseudo-code form where the required optimization procedure is detailed. For synthetic data the method is compared to a more conventional approach. The new method reduces artifacts caused by the usual two-steps procedure, baseline removal then peak extraction. Finally some results on real linear MALDI-ToF spectra are provided. CONCLUSIONS: We introduced a new method for peak picking, where peak deconvolution and baseline computation are performed jointly. On simulated data we showed that this global approach performs better than a classical one where baseline and peaks are processed sequentially. A dedicated experiment has been conducted on real spectra. In this study a collection of spectra of spiked proteins were acquired and then analyzed. Better performances of the proposed method, in term of accuracy and reproductibility, have been observed and validated by an extended statistical analysis.


Asunto(s)
Algoritmos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Artefactos
20.
Sensors (Basel) ; 17(7)2017 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-28704945

RESUMEN

In this paper, a data compression technology-based intelligent data acquisition (IDAQ) system was developed for structural health monitoring of civil structures, and its validity was tested using random signals (El-Centro seismic waveform). The IDAQ system was structured to include a high-performance CPU with large dynamic memory for multi-input and output in a radio frequency (RF) manner. In addition, the embedded software technology (EST) has been applied to it to implement diverse logics needed in the process of acquiring, processing and transmitting data. In order to utilize IDAQ system for the structural health monitoring of civil structures, this study developed an artificial filter bank by which structural dynamic responses (acceleration) were efficiently acquired, and also optimized it on the random El-Centro seismic waveform. All techniques developed in this study have been embedded to our system. The data compression technology-based IDAQ system was proven valid in acquiring valid signals in a compressed size.


Asunto(s)
Compresión de Datos , Aceleración , Algoritmos , Procesamiento de Señales Asistido por Computador , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA