Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Front Microbiol ; 15: 1432240, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290515

RESUMEN

Antimicrobial resistance mediated by extended-spectrum beta-lactamase (ESBL)- and plasmid-mediated cephalosporinase (AmpC)-producing Enterobacterales, as well as carbapenemase-producing Enterobacterales have globally increased among companion animals, posing a potential health risk to humans in contact with them. This prospective longitudinal study investigates the transfer of ESBL/AmpC- and carbapenemase-producing Enterobacterales between companion animals and their cohabitant humans in Portugal (PT) and the United Kingdom (UK) during animal infection. Fecal samples and nasal swabs collected from dogs and cats with urinary tract infection (UTI) or skin and soft tissue infection (SSTI), and their cohabitant humans were screened for resistant strains. Relatedness between animal and human strains was established by whole-genome sequencing (WGS). ESBL/AmpC-producing Enterobacterales were detected in companion animals (PT = 55.8%; UK = 36.4%) and humans (PT = 35.9%; UK = 12.5%). Carbapenemase-producing Enterobacterales carriage was observed in one dog from Portugal (2.6%) and another dog from the UK (4.5%). Transmission of index clinical ESBL-producing Escherichia coli and Klebsiella pneumoniae strains to cohabitant humans was observed in three Portuguese households (6.9%, n = 43), with repeated isolation of the index strains on fecal samples from the animals and their cohabiting humans. In addition, longitudinal sharing of E. coli strains carried by companion animals and their owners was observed in other two Portuguese households and two households from the UK. Furthermore, a multidrug-resistant ACT-24-producing Enterobacter hormaechei subsp. hoffmannii strains were also shared within another Portuguese household. These results highlight the importance of the household as an epidemiological unit in the efforts to mitigate the spread of antimicrobial resistance, further emphasizing the need for antimicrobial surveillance in this context, capable of producing data that can inform and evaluate public health actions.

2.
Indian J Med Microbiol ; 50: 100619, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38848891

RESUMEN

An emerging pathotype of Klebsiella pneumoniae, initially identified in Southeast Asian countries, has now spread to multiple countries, including India. These convergent strains, carrying both resistance and virulence determinants, are classified as multidrug-resistant Hypervirulent Klebsiella pneumoniae (MDR-HvKp). Since the initial reports, there has been a concerning surge in infections caused by this pathotype globally. In this context, we aim to shed light on the evolutionary changes that have taken place in this relatively novel pathotype. Understanding these changes is crucial for devising diagnosis and targeted intervention strategies to mitigate the spread of MDR-HvKp infections.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Evolución Molecular , India/epidemiología , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae/patogenicidad , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/clasificación , Virulencia , Factores de Virulencia/genética
3.
Int J Food Microbiol ; 421: 110790, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38878707

RESUMEN

The objective of this study was to evaluate the occurrence of E. coli in hunted wild boars in Sardinia (Italy) and to further characterize the isolates with Whole Genome Sequencing to assess the genetic relatedness and the presence of virulence and antimicrobial resistance (AMR) genes. Samples were taken from 66 wild boars between 2020 and 2022 slaughtered in five hunting houses. A total of 181 samples were tested, including 66 samples from mesenteric lymph nodes, 66 samples from colon content and 49 samples from carcass surface. Isolates referable to Escherichia species were detected in all of the wild boars sampled. On a selection of 61 isolates, sequencing was conducted and antimicrobial susceptibility was tested. Among these, three isolates were confirmed to be two Escherichia marmotae (cryptic clade V) and one Escherichia ruysiae (cryptic clade III). E. coli pathotypes identified were UPEC (13 %), ExPEC-UPEC (5.6 %) and ETEC (3.7 %). Moreover, 3/6 E. marmotae isolates had typical ExPEC genes. Genetic similarity was observed in isolates collected from animals slaughtered in the same hunting house; this suggests epidemiological links deriving from the presence of animals infected with closely related strains or the result of cross-contamination. Antimicrobial resistance genes were detected in three non-pathogenic E. coli isolates: one isolate had sul2, tet(B), aph(6)-ld and aph(3″)-lb resistance genes and two had the fosA7 gene. This study confirmed that wild boars can act as reservoirs and spreaders of pathogenic Escherichia species and it provides information for future comparative genomic analysis in wildlife. Although isolates showed a limited resistome, the detection of resistance in non-pathogenic isolates underlines the need to monitor antimicrobial resistance in the wild boar population. To the best of our knowledge, this is the first detection of E. mamotae and E. ruysiae isolates in wild boars in Italy and the presence of this pathogen in wildlife and livestock need to be investigated further.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Escherichia coli , Sus scrofa , Animales , Italia , Sus scrofa/microbiología , Porcinos , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Antibacterianos/farmacología , Escherichia/genética , Escherichia/aislamiento & purificación , Escherichia/efectos de los fármacos , Escherichia/patogenicidad , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/epidemiología , Pruebas de Sensibilidad Microbiana , Virulencia/genética , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/epidemiología , Secuenciación Completa del Genoma
4.
Curr Issues Mol Biol ; 46(6): 5909-5928, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38921024

RESUMEN

Uropathogenic Escherichia coli (UPEC) is the main cause of urinary tract infections (UTIs) and carries virulence and resistance factors often found in mobilizable genetic elements, such as plasmids or pathogenicity islands (PAIs). UPEC is part of the extraintestinal pathogenic E. coli (ExPEC), but hybrid strains possessing both diarrheagenic E. coli (DEC) and ExPEC traits, termed "hypervirulent", present a significant health threat. This study assessed the prevalence of UPEC PAIs, ExPEC sequence types (ST), DEC genes, carbapenemase and extended-spectrum ß-lactamase (ESBL) phenotypes, resistance genotypes, and plasmids in 40 clinical isolates of UPEC. Results showed that 72.5% of isolates had PAIs, mainly PAI IV536 (53%). ESBL phenotypes were found in 65% of ß-lactam-resistant isolates, with 100% of carbapenem-resistant isolates producing carbapenemase. The predominant ESBL gene was blaCTX-M-2 (60%), and the most common resistance gene in fluoroquinolone and aminoglycoside-resistant isolates was aac(6')Ib (93%). Plasmids were present in 57% of isolates, and 70% belonged to the ST131 clonal group. Molecular markers for DEC pathotypes were detected in 20 isolates, with 60% classified as hybrid pathotypes. These findings indicate significant pathogenic potential and the presence of hybrid pathotypes in E. coli UTI clinical isolates in the Mexican population.

5.
J Fungi (Basel) ; 10(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38921392

RESUMEN

Colletotrichum lindemuthianum is a phytopathogenic fungus that causes anthracnose in common beans (Phaseolus vulgaris) and presents a great diversity of pathotypes with different levels of virulence against bean varieties worldwide. The purpose of this study was to establish whether pathotypic diversity is associated with differences in the mycelial growth and secretion of plant-cell-wall-degrading enzymes (PCWDEs). We evaluated growth, hemicellulase and cellulase activity, and PCWDE secretion in four pathotypes of C. lindemuthianum in cultures with glucose, bean hypocotyls and green beans of P. vulgaris, and water hyacinth (Eichhornia crassipes). The results showed differences in the mycelial growth, hemicellulolytic activity, and PCWDE secretion among the pathotypes. Glucose was not the preferred carbon source for the best mycelial growth in all pathotypes, each of which showed a unique PCWDE secretion profile, indicating different levels of carbon catabolite regulation (CCR). The pathotypes showed a high differential hemicellulolytic capacity to degrade host and water hyacinth tissues, suggesting CCR by pentoses and that there are differences in the absorption and metabolism of different monosaccharides and/or disaccharides. We propose that different levels of CCR could optimize growth in different host tissues and could allow for consortium behavior in interactions with bean crops.

6.
Pathogens ; 13(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38921740

RESUMEN

Verticillium wilt is a soil-borne disease caused by distinct vegetative compatibility groups (VCG) of the fungus Verticillium dahliae. Defoliating (VCG 1A) and non-defoliating (VCG 2A) pathotypes of V. dahliae have contributed to yield losses of cotton production in Australia. To study the virulence and the infection process of V. dahliae on cotton, two isolates, one representing each VCG, have been transformed with fluorescent protein genes. The transformants maintained their ability to infect the host, and both strains were observed to move through the plant vasculature to induce wilt symptoms. Furthermore, virulence testing suggests that the cotton V. dahliae strains can endophytically colonise common weed plant species found in the Australian landscape, and that is contrasted by their ability to infect and colonise native tobacco plants. The fluorescently labelled strains of V. dahliae not only allowed us to gain a thorough understanding of the infection process but also provided a method to rapidly identify recovered isolates from host colonisation studies.

7.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791380

RESUMEN

Rabbit haemorrhagic disease viruses (RHDV) belong to the family Caliciviridae, genus Lagovirus europaeus, genogroup GI, comprising four genotypes GI.1-GI.4, of which the genotypes GI.1 and GI.2 are pathogenic RHD viruses, while the genotypes GI.3 and GI.4 are non-pathogenic RCV (Rabbit calicivirus) viruses. Among the pathogenic genotypes GI.1 and GI.2 of RHD viruses, an antigenic variant of RHDV, named RHDVa-now GI.1a-RHDVa, was distinguished in 1996; and in 2010, a variant of RHDV-named RHDVb, later RHDV2 and now GI.2-RHDV2/b-was described; and recombinants of these viruses were registered. Pathogenic viruses of the genotype GI.1 were the cause of a disease described in 1984 in China in domestic (Oryctolagus (O.) cuniculus domesticus) and wild (O. cuniculus) rabbits, characterised by a very rapid course and a mortality rate of 90-100%, which spread in countries all over the world and which has been defined since 1989 as rabbit haemorrhagic disease. It is now accepted that GI.1-RHDV, including GI.1a-RHDVa, cause the predetermined primary haemorrhagic disease in domestic and wild rabbits, while GI.2-RHDV2/b cause it not only in rabbits, including domestic rabbits' young up to 4 weeks and rabbits immunised with rabbit haemorrhagic disease vaccine, but also in five various species of wild rabbits and seven different species of hares, as well as wild ruminants: mountain muskoxen and European badger. Among these viruses, haemagglutination-positive, doubtful and harmful viruses have been recorded and described and have been shown to form phylogenogroups, immunotypes, haematotypes and pathotypes, which, together with traits that alter and expand their infectious spectrum (rabbit, hare, wild ruminant, badger and various rabbit and hare species), are the determinants of their pathogenicity (infectivity) and immunogenicity and thus shape their virulence. These relationships are the aim of our consideration in this article.


Asunto(s)
Infecciones por Caliciviridae , Virus de la Enfermedad Hemorrágica del Conejo , Animales , Virus de la Enfermedad Hemorrágica del Conejo/genética , Virus de la Enfermedad Hemorrágica del Conejo/patogenicidad , Virus de la Enfermedad Hemorrágica del Conejo/inmunología , Infecciones por Caliciviridae/virología , Infecciones por Caliciviridae/veterinaria , Infecciones por Caliciviridae/inmunología , Conejos , Genotipo , Virulencia , Filogenia
8.
Pan Afr Med J ; 47: 25, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558553

RESUMEN

Introduction: diarrheal infections in young children below five years and food animals are caused by diarrheagenic Escherichia coli strains. The study focused on understanding the association between DEC pathotypes in children below five years and food animals to establish the possibility of zoonotic transmission. Methods: samples from 150 children who presented with diarrhea at the Kisumu County Hospital and 100 stool samples from food animals were collected and processed using culture methods. Molecular identification of the pathotypes was assayed using a primer-specific polymerase chain reaction that targeted the six virulence genes related to the diarrheagenic Escherichia coli pathotypes. Results: one hundred and fifty-six study subjects (100 children samples and 56 food animals) samples were positive for E. coli polymerase chain reaction detection revealed a prevalence of (23%) among children below five years and a prevalence of (20%) among the food animals. Children samples showed Enteroaggregative Escherichia coli, having high phenotypic frequency of (12%) followed by Enterotoxigenic Escherichia coli, (5.3%) and Enteropathogenic Escherichia (3.3%) the least being mixed infections Enteroaggregative/Enterotoxigenic Escherichia coli and Enteroaggregative/Enteropathogenic Escherichia coli with (1.3%) respectively. The food animals found in children homesteads were detected to harbor pathogenic strains of E. coli. Enteropathogenic Escherichia coli was the most prevalent pathotypes detected in cattle (13%) followed by Enterotoxigenic Escherichia coli detected in goats at (4%) and poultry at (3%). Conclusion: presence of diarrheagenic Escherichia coli in food animals could serve as reservoirs of transmitting these bacteria to children below five years.


Asunto(s)
Escherichia coli Enteropatógena , Infecciones por Escherichia coli , Niño , Humanos , Animales , Bovinos , Preescolar , Prevalencia , Kenia/epidemiología , Infecciones por Escherichia coli/diagnóstico , Escherichia coli Enteropatógena/genética , Diarrea/epidemiología , Diarrea/microbiología
9.
Appl Microbiol Biotechnol ; 108(1): 298, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607493

RESUMEN

Radopholus similis is a destructive, migratory, and endophytoparasitic nematode. It has two morphologically indistinguishable pathotypes (or physiological races): banana and citrus pathotypes. At present, the only reliable method to differentiate the two pathotypes is testing the infestation and parasitism of nematodes on Citrus spp. via inoculation. However, differences in inoculation methods and conditions adopted by different researchers complicate obtaining consistent results. In this study, the parasitism and pathogenicity of 10 R. similis populations on rough lemon (Citrus limon) seedlings and the tropism and invasion of rough lemon roots were tested. It revealed that populations SWK, GJ, FZ, GZ, DBSR, and YJ were citrus pathotypes, which showed parasitism and pathogenicity on rough lemon and could invade rough lemon roots, whereas populations XIN, ML, HN6, and HL were banana pathotypes, having no parasitism and pathogenicity on rough lemon and they did not invade the rough lemon roots. Four pectate lyase genes (Rs-pel-2, Rs-pel-3, Rs-pel-4, and Rs-pel-5) belonging to the Class III family from these populations were amplified and analysed. The gene Rs-pel-3 could be amplified from six citrus pathotype populations and was stably expressed in the four developmental stages of the nematode, whereas it could not be amplified from the four banana pathotypes. Rs-pel-3 expression may be related to the parasitism and pathogenicity of R. similis on rough lemon. Hence, it can be used as a molecular marker to distinguish between banana and citrus pathotypes and as a target gene for the molecular identification of these two pathotypes. KEY POINTS: • Four pectate lyase genes (Rs-pels) from Radopholus similis were cloned and analysed. • The expression of Rs-pels is different in two pathotypes of Radopholus similis. • A molecular identification method for two pathotypes of Radopholus similis using pectate lyase gene Rs-pel-3 as the target gene was established.


Asunto(s)
Tylenchoidea , Animales , Tylenchoidea/genética , Raíces de Plantas , Polisacárido Liasas/genética , Plantones
10.
Mol Biol Rep ; 51(1): 494, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581525

RESUMEN

BACKGROUND: Escherichia coli (E. coli) serves as a common indicator of gut microbiota and is utilized for monitoring antimicrobial resistance determinants in food-producing animals. This study aimed to investigate antimicrobial resistance patterns in virulence gene-positive E. coli isolates obtained from 340 healthy and diarrheic calves. METHODS AND RESULTS: A total of 340 fecal swab samples were obtained from diarrheic (n = 170) and healthy (n = 170) calves for 12 months from different farms in Kerman, Iran. The samples were phenotypically analyzed to detect E. coli isolates and antibiotic resistance. Also, antimicrobial resistance genes, diarrheagenic E. coli pathotypes, and phylogenetic background were screened by PCR. Fifteen percent (51/340) of E. coli isolates were positive for at least one of the examined virulence genes (VGs); the prevalence of VGs in E. coli isolates from healthy calves (36/170; 21.17%) was higher than that in diarrheic cases (15/170; 8.82%). Out of the 51 VG-positive isolates, six pathotypes including Shiga toxin-producing E. coli (STEC; 27.45%), enterotoxigenic E. coli (ETEC; 23.52%), enterohemorrhagic E. coli (EHEC; 19.6%), necrotoxigenic E. coli (NTEC; 19.6%), enteropathogenic E. coli (EPEC; 15.68%), enteroinvasive E. coli (EIEC; 1.96%) and three hybrid pathotypes including ETEC/STEC, ETEC/EHEC, and STEC/EIEC were detected among the strains. Antimicrobial resistance (AR) was observed in 98.03% of the VG-positive isolates, which was the same for both healthy and diarrheic calves. The maximum prevalence rate of AR was found against trimethoprim/sulfamethoxazole (49.01%; 3/51), while the minimum prevalence rate was against gentamycin (5.88%; 25/51). Among the VG-positives, phylotype A was found to be the most prevalent followed by B1 and D phylotypes. CONCLUSIONS: The prevalence of VG-positive E. coli isolates was higher in healthy calves compared to diarrheic cases. AR was widespread among VG-positive isolates. These findings suggest that calves may serve as potential reservoirs of antimicrobial-resistant hybrid pathotypes of E. coli.


Asunto(s)
Antiinfecciosos , Escherichia coli Enteropatógena , Infecciones por Escherichia coli , Humanos , Animales , Bovinos , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Irán/epidemiología , Filogenia , Farmacorresistencia Microbiana , Diarrea/epidemiología , Diarrea/veterinaria
11.
BMC Med Genomics ; 17(1): 110, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671498

RESUMEN

BACKGROUND: Escherichia coli is known to cause about 2 million deaths annually of which diarrhea infection is leading and typically occurs in children under 5 years old. Although Africa is the most affected region there is little information on their pathotypes diversity and their antimicrobial resistance. OBJECTIVE: To determine the pathotype diversity and antimicrobial resistance among E. coli from patients attending regional referral hospitals in Tanzania. MATERIALS AND METHODS: A retrospective cross-section laboratory-based study where a total of 138 archived E. coli isolates collected from 2020 to 2021 from selected regional referral hospitals in Tanzania were sequenced using the Illumina Nextseq550 sequencer platform. Analysis of the sequences was done in the CGE tool for the identification of resistance genes and virulence genes. SPSS version 20 was used to summarize data using frequency and proportion. RESULTS: Among all 138 sequenced E. coli isolates, the most prevalent observed pathotype virulence genes were of extraintestinal E. coli UPEC fyuA gene 82.6% (114/138) and NMEC irp gene 81.9% (113/138). Most of the E. coli pathotypes observed exist as a hybrid due to gene overlapping, the most prevalent pathotypes observed were NMEC/UPEC hybrid 29.7% (41/138), NMEC/UPEC/EAEC hybrid 26.1% (36/138), NMEC/UPEC/DAEC hybrid 18.1% (25/138) and EAEC 15.2% (21/138). Overall most E. coli carried resistance gene to ampicillin 90.6% (125/138), trimethoprim 85.5% (118/138), tetracycline 79.9% (110/138), ciprofloxacin 76.1% (105/138) and 72.5% (100/138) Nalidixic acid. Hybrid pathotypes were more resistant than non-hybrid pathotypes. CONCLUSION: Whole genome sequencing reveals the presence of hybrid pathotypes with increased drug resistance among E. coli isolated from regional referral hospitals in Tanzania.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Tanzanía , Humanos , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/tratamiento farmacológico , Farmacorresistencia Bacteriana/genética , Estudios Retrospectivos , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Derivación y Consulta , Factores de Virulencia/genética
12.
J Fungi (Basel) ; 10(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38535192

RESUMEN

Pyrenophora teres f. teres (Ptt), the causal agent of net form net blotch (NFNB) disease, is an important and widespread pathogen of barley. This study aimed to quantify and characterize the virulence of Ptt isolates collected from experimental fields of barley in Hungary. Infection responses across 20 barley differentials were obtained from seedling assays of 34 Ptt isolates collected from three Hungarian breeding stations between 2008 and 2018. Twenty-eight Ptt pathotypes were identified. Correspondence analysis followed by hierarchical clustering on the principal components and host-by-pathogen GGE biplots suggested a continuous range of virulence and an absence of specific isolate × barley differential interactions. The isolates were classified into four isolate groups (IG) using agglomerative hierarchical clustering. One IG could be distinguished from other IGs based on avirulence/virulence on one to five barley differentials. Several barley differentials expressed strong resistance against multiple Ptt isolates and may be useful in the development of NFNB-resistant barley cultivars in Hungary. Our results emphasize that the previously developed international barley differential set needs to be improved and adapted to the Hungarian Ptt population. This is the first report on the pathogenic variations of Ptt in Hungary.

13.
Microbiol Resour Announc ; : e0011324, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530041

RESUMEN

Herein is reported the draft genome sequence of a triple hybrid Escherichia coli strain isolated from a healthy donor feces. The assembly is 5.2 Mbp, composed of 247 contigs, with a N50 of 77, 241 bp, presenting a GC content of 50.8%.

14.
Schweiz Arch Tierheilkd ; 166(3): 131-140, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38419484

RESUMEN

INTRODUCTION: Shiga toxin-producing Escherichia (E.) coli (STEC) are zoonotic foodborne pathogens of significant public health importance. While ruminants are considered the main reservoir, wild animals are increasingly acknowledged as carriers and potential reservoirs of STEC. The aim of this study was to determine the occurrence of STEC in a total of 59 faecal samples of hunted wild boars (Sus scrofa) from two different regions in Switzerland (canton Thurgau in northern Switzerland and canton Ticino in southern Switzerland), and to characterise the isolates using a whole genome sequencing approach. After an enrichment step, Shiga-toxin encoding genes (stx) were detected by real-time PCR in 41 % (95 % confidence interval (95 %CI) 0,29 - 0,53) of the samples, and STEC were subsequently recovered from 22 % (95 %CI 0,13 - 0,34) of the same samples. Seven different serotypes and six different sequence types (STs) were found, with O146:H28 ST738 (n = 4) and O100:H20 ST2514 (n = 4) predominating. Subtyping of stx identified isolates with stx1c/stx2b (n = 1), stx2a (n = 1), stx2b (n = 6), and stx2e (n = 6). No isolate contained the eae gene, but all harboured additional virulence genes, most commonly astA (n = 10), hlyE (n = 9), and hra (n = 9). STEC O11:H5, O21:H21, and O146:H28 harboured virulence factors associated with extra-intestinal pathogenic E. coli (ExPEC), and STEC O100:H20 and O155:H26 possessed sta1 and/or stb and were STEC/enterotoxigenic E. coli (ETEC) hybrid pathotypes. Our results show that wild boars are carriers of STEC which may be distributed in the environment, possibly leading to the contamination of agricultural crops and water sources. The serogroups included STEC O146 which belongs to the most common non-O157 serogroups associated with human illness in Europe, with implications for public health. Since Stx2e-producing STEC have frequently been reported in swine and pork, STEC O100:H20 harbouring stx2e in faeces of wild boars may be relevant to free-range systems of pig farming because of the potential risk of transmission events at the wildlife-livestock interface.


INTRODUCTION: Les Escherichia (E.) coli producteurs de shiga-toxine (STEC) sont des agents pathogènes zoonotiques d'origine alimentaire qui revêtent une grande importance pour la santé publique. Alors que les ruminants sont considérés comme le principal réservoir, les animaux sauvages sont de plus en plus souvent reconnus comme porteurs et réservoirs potentiels de STEC. L'objectif de cette étude était de déterminer la présence de STEC dans un total de 59 échantillons fécaux de sangliers (Sus scrofa) chassés provenant de deux régions différentes de Suisse (canton de Thurgovie dans le nord de la Suisse et canton du Tessin dans le sud de la Suisse) et de caractériser les isolats en utilisant une approche de séquençage du génome entier. Après une étape d'enrichissement, les gènes codant pour la Shiga-toxine (stx) ont été détectés par PCR en temps réel dans 41% (intervalle de confiance à 95% (95%CI) 0,29 - 0,53) des échantillons, et les STEC ont ensuite été récupérés dans 22% (95%CI 0,13 - 0,34) des mêmes échantillons. Sept sérotypes différents et six types de séquence (ST) différents ont été trouvés, avec une prédominance de O146:H28 ST738 (n = 4) et O100:H20 ST2514 (n = 4). Le sous-typage des stx a permis d'identifier des isolats avec stx1c/stx2b (n = 1), stx2a (n = 1), stx2b (n = 6) et stx2e (n = 6). Aucun isolat ne contenait le gène eae, mais tous hébergeaient d'autres gènes de virulence, le plus souvent astA (n = 10), hlyE (n = 9) et hra (n = 9). Les STEC O11:H5, O21:H21 et O146:H28 présentaient des facteurs de virulence associés à des E. coli pathogènes extra-intestinaux (ExPEC), et les STEC O100:H20 et O155:H26 possédaient sta1 et/ou stb et étaient des pathotypes hybrides STEC/E. coli entérotoxinogène (ETEC).


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga-Toxigénica , Enfermedades de los Porcinos , Animales , Humanos , Porcinos , Escherichia coli Shiga-Toxigénica/genética , Suiza/epidemiología , Proteínas de Escherichia coli/genética , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Serotipificación/veterinaria , Animales Salvajes , Toxina Shiga/genética , Sus scrofa , Enfermedades de los Porcinos/epidemiología
15.
Osteoarthritis Cartilage ; 32(2): 166-176, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37984558

RESUMEN

OBJECTIVES: Osteoarthritis (OA) is a debilitating and heterogeneous condition, characterized by various levels of articular cartilage degradation, osteophytes formation, and synovial inflammation. Multiple evidences suggest that synovitis may appear early in the disease development and correlates with disease severity and pain, therefore representing a relevant therapeutic target. In a typical synovitis-driven joint disease, namely rheumatoid arthritis (RA), several pathotypes have been described by our group and associated with clinical phenotypes, disease progression, and response to therapy. However, whether these pathotypes can be also observed in the OA synovium is currently unknown. METHODS: Here, using histological approaches combined with semi-quantitative scoring and quantitative digital image analyses, we comparatively characterize the immune cell infiltration in a large cohort of OA and RA synovial tissue samples collected at the time of total joint replacement. RESULTS: We demonstrate that OA synovium can be categorized also into three pathotypes and characterized by disease- and stage-specific features. Moreover, we revealed that pathotypes specifically reflect distinct levels of peripheral inflammation. CONCLUSIONS: In this study, we provide a novel and relevant pathological classification of OA synovial inflammation. Further studies investigating synovial molecular pathology in OA may contribute to the development of disease-modifying therapies.


Asunto(s)
Artritis Reumatoide , Osteoartritis , Sinovitis , Humanos , Osteoartritis/metabolismo , Artritis Reumatoide/metabolismo , Membrana Sinovial/metabolismo , Sinovitis/patología , Inflamación/metabolismo
16.
Vavilovskii Zhurnal Genet Selektsii ; 27(5): 447-453, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37808216

RESUMEN

The response of 250 common winter wheat breeding lines was investigated for resistance to the causative agent of Puccinia triticina under conditions of an infected field on the territory of Dobrudzha Agricultural Institute - General Toshevo, Bulgaria, during three successive seasons. Twenty lines with different degrees of resistance under field conditions were selected. Multi-pathotype testing was used to study the response of these lines at seedling stage under greenhouse conditions to individual pathotypes of P. triticina. Based on the response of the lines at seedling and adult stages, we found out that 20 % of them carried race-specific resistance. One of the lines (99/08-52) reacted with full resistance to the pathotypes used under greenhouse conditions. The reaction demonstrated by this line coincided with the response of isogenic lines carrying the genes Lr9, Lr19, Lr22a, Lr22b and Lr25. The other three lines (19/06- 108, 82/08-43 and 82/08-35) showed a resistant reaction to 6 or 5 of the pathotypes used in the study. Their response partially coincided with the reaction of 5 isogenic lines, and the presence of some of these genes in the above lines is quite possible. Lines carrying this type of resistance are to be subjected to further genetic and breeding investigations to prove the presence of a race-specific gene. Twenty-five percent of the lines combined partial race-specific resistance at seedling stage with the resistance of race non-specific nature at adult stage. Forty percent of all studied lines carried race non-specific resistance, and 15 % of the lines possessed resistance of the "slow rusting" type. As a result of the study we carried out, the lines that demonstrated stable resistance to leaf rust can provide sufficient protection of the host and can be included in the breeding programs for developing varieties resistant to P. triticina.

17.
Antibiotics (Basel) ; 12(9)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37760652

RESUMEN

Nosocomial infections caused by Escherichia coli pose significant therapeutic challenges due to the high expression of genes encoding antimicrobial drug resistance. In this study, we investigated the conformation of the beta-lactam resistome responsible for the specific pattern of resistance against beta-lactam antibiotics. A total of 218 Escherichia coli strains were isolated from in-hospital patients diagnosed with nosocomial infections, obtained from various sources such as urine (n = 49, 22.48%), vaginal discharge (n = 46, 21.10%), catheter tips (n = 14, 6.42%), blood (n = 13, 5.96%), feces (n = 12, 5.50%), sputum (n = 11, 5.05%), biopsies (n = 8, 3.67%), cerebrospinal fluid (n = 2, 0.92%) and other unspecified discharges (n = 63, 28.90%). To characterize the beta-lactam resistome, all strains were subjected to antibiotic dilution tests and grown in beta-lactam antibiotics supplemented with Luria culture medium. Subsequently, multiplex PCR and next-generation sequencing were conducted. The results show a multi-drug-resistance phenotype, particularly against beta-lactam drugs. The primary determinant of this resistance was the expression of the blaTEM gene family, with 209 positive strains (95.87%) expressing it as a single gene (n = 47, 21.6%) or in combination with other genes. Common combinations included blaTEM + blaCTX (n = 42, 19.3%), blaTEM + blaCTX + blaSHV (n = 13, 6%) and blaTEM + blaCTX + blaBIL (n = 12, 5.5%), among others. The beta-lactam resistome of nosocomial Escherichia coli strains isolated from inpatients at the "October first" Regional Hospital of ISSSTE was predominantly composed of members of the blaTEM gene family, expressed in various configurations along with different members of other beta-lactamase gene families.

18.
Prev Vet Med ; 218: 105978, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37544079

RESUMEN

Escherichia coli, an Enterobacterales member, is a normal representative of the microbiota of homeothermic animals. Most strains are commensal, but several pathotypes can cause disease, and numerous antimicrobial resistance factors have been identified. These bacteria have spread rapidly in recent years, highlighting the importance of screening the environment and non-human reservoirs for virulent strains and/or those presenting resistance factors, in addition to other microorganisms of public health importance. In this context, this study aimed to survey Enterobacteriales present in seabirds sampled along the Brazilian coast, comparing findings between migratory and resident birds, as well as between wrecked and non-wrecked animals. Escherichia coli pathotypes were also characterized through rapid seroagglutination and polymerase chain reaction techniques and antimicrobial resistance profiles were investigated through the disc agar diffusion method. Cloacal, ocular, oral, tracheal, and skin lesion swabs, as well as fresh feces, were collected from 122 seabirds. The findings indicate these animals as important hosts for opportunistic human pathogens. Escherichia coli strains were identified in 70 % of the analyzed seabirds, 62 % of which displaying resistant or intermediate profiles to at least one antimicrobial, while 7% were multiresistant. Resistance to tetracycline (22 %), nalidixic acid (15 %), trimethoprim-sulfamethozaxol (14 %) and ampicillin (12 %) were the most prevalent. Resistance to cefoxitin, a critically important antimicrobial for human medicine, was also detected. Virulence genes for one of the EAEC, ETEC or EPEC pathotypes were detected in 30 % of the identified strains, the first two described in seabirds for the first time. The EAEC gene was detected in 25 % of the sampled seabirds, all resident, 8 % of which exhibited a multidrug-resistant profile. Thus, seabirds comprise important reservoirs for this pathotype. Escherichia coli was proven an ubiquitous and well-distributed bacterium, present in all evaluated bird species and sampling sites (except Marajó Island). According to the chi-square test, no significant differences between E. coli prevalences or antimicrobial resistance profiles between migratory and resident and between wrecked and non-wrecked seabirds were observed. Thus, migratory birds do not seem to contribute significantly to E. coli frequencies, pathotypes or antimicrobial resistance rates on the Brazilian coast.

19.
Antibiotics (Basel) ; 12(4)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37107044

RESUMEN

Swine pathogenic infection caused by Escherichia coli, known as swine colibacillosis, represents an epidemiological challenge not only for animal husbandry but also for health authorities. To note, virulent E. coli strains might be transmitted, and also cause disease, in humans. In the last decades, diverse successful multidrug-resistant strains have been detected, mainly due to the growing selective pressure of antibiotic use, in which animal practices have played a relevant role. In fact, according to the different features and particular virulence factor combination, there are four different pathotypes of E. coli that can cause illness in swine: enterotoxigenic E. coli (ETEC), Shiga toxin-producing E. coli (STEC) that comprises edema disease E. coli (EDEC) and enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), and extraintestinal pathogenic E. coli (ExPEC). Nevertheless, the most relevant pathotype in a colibacillosis scenario is ETEC, responsible for neonatal and postweaning diarrhea (PWD), in which some ETEC strains present enhanced fitness and pathogenicity. To explore the distribution of pathogenic ETEC in swine farms and their diversity, resistance, and virulence profiles, this review summarizes the most relevant works on these subjects over the past 10 years and discusses the importance of these bacteria as zoonotic agents.

20.
Anim Biotechnol ; 34(7): 3267-3273, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36007588

RESUMEN

To understand the pathology of natural cases of E. coli pathotypes infection in bovine calves, 45 cases of bovine calves, below one month of age, died due to enteritis were studied. Total seventeen cases (37.77%) turned positive for different pathotypes of E. coli by RT-PCR. Out of seventeen positive samples for E. coli, six cases (35.29%) were positive for eae gene, three cases (17.64%) for bfp gene and eight cases (47.05) for fimA gene of E. coli. Gross lesions in these cases showed pin-point to ecchymotic hemorrhages in the mucosa of jejunum, ileum and colon. The draining mesenteric lymph nodes were swollen, enlarged and showed cord -like structure. Histopathology of small intestine showed, villi lining cells were sloughed off, tips of villi capillary plexus were congested and hemorrhagic, and skipping lesions of microabscesses in the crypts of mucosa were observed. In the duodenum, necrosis of crypts and infiltration of mononuclear cells in the lamina propria and around Brunner's gland. In mesenteric lymph nodes the subscapular space were infiltrated with mononuclear cells with depletion of lymphoid follicles in cortical area. Peri-trabecular and medullary sinuses of mesenteric lymph nodes were necrosed.


Asunto(s)
Enfermedades de los Bovinos , Infecciones por Escherichia coli , Animales , Bovinos , Escherichia coli/genética , Diarrea/veterinaria , Diarrea/patología , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/patología , Íleon/patología , Yeyuno/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA