Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37513288

RESUMEN

The interfacial mechanism has always been a concern for 3-aminopropyltriethoxysilane (APTES)-grafted palygorskite (PAL). In this research, the mechanism of graft modification for grafting of APTES to the surface of PAL (100) was studied using density functional theory (DFT) calculation. The results illustrated that different grafting states of the APTES influence the inter- and intramolecular interactions between APTES/PAL (100), which are reflected in the electronic structures. For single-, double-, and three-toothed state APTES-PAL (100), the charge transfer rates from the PAL (100) surface to APTES were 0.68, 1.02, and 0.77 e, respectively. The binding energy results show that PAL (100) modification performance in the double-tooth state is the best compared to the other states, with the lowest value of -181.91 kJ/mol. The double-toothed state has lower barrier energy (94.69, 63.11, and 153.67 kJ/mol) during the modification process. This study offers theoretical insights into the chemical modification of the PAL (100) surface using APTES coupling agents, and can provide a guide for practical applications.

2.
Environ Pollut ; 219: 924-931, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27634001

RESUMEN

Palygorskite (PAL) is a good heavy metal adsorbent due to its high surface area, low cost, and environmentally compatibility. But the natural PAL has limited its adsorption capacity and selectivity. In this study, a cost-effective and readily-generated absorbent, l-threonine-modified palygorskite (L-PAL), was used and its performance for Cu(II) removal in simulated aquaculture wastewater was evaluated. After preparation, L-PAL was characterized by using Fourier transform infrared spectroscopy, scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffractometer, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis. The impacts of pH, adsorbent dosage, contact time, and initial Cu(II) concentration on the adsorption capacity of L-PAL were examined. The Cu(II) adsorption capacity on L-PAL was enhanced almost 10 times than that of raw PAL. The adsorption isotherms of Cu(II) fit the Langmuir isotherms, and the adsorption kinetics was dominated by the pseudo-second-order model. The thermodynamic parameters at four temperatures were calculated, which indicated that the adsorption was spontaneous and endothermic. The adsorption mechanism involves complexation, chelation, electrostatic attraction, and micro-precipitation. Furthermore, L-PAL is shown to have a high regeneration capacity. These results indicate that L-PAL is a cheap and promising absorbent for Cu(II) removal and hold potential to be used for aquaculture wastewater treatment.


Asunto(s)
Acuicultura , Compuestos de Magnesio/química , Metales Pesados/química , Compuestos de Silicona/química , Treonina/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , China , Restauración y Remediación Ambiental/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA