Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 17: 1233979, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089976

RESUMEN

Background: Electroencephalography (EEG) has identified neural activity in specific brain regions as a potential indicator of the neural signature of chronic pain. This study compared the lagged coherence connectivity between regions of interest (ROIs) associated with the pain connectome in women with fibromyalgia (FM) and healthy women (HC). Methods: We evaluated 64 participants (49 FM and 15 HC) during resting-state EEG sessions under both eyes open (EO) and eyes closed (EC) conditions. In addition to EEG measurements, we assessed clinical and psychological symptoms and serum levels of brain-derived neurotrophic factor (BDNF). The connectivity between eight ROIs was computed across eight different EEG frequencies. Results: The FM group demonstrated increased connectivity between the left dorsolateral prefrontal cortex (DLPFC) and right anterior cingulate cortex (ACC), specifically in the beta-3 frequency band (t = 3.441, p = 0.044). When comparing the EO and EC conditions, FM patients exhibited heightened interhemispheric connectivity between insular areas (t = 3.372, p = 0.024) and between the left insula (INS) and right DLPFC (t = 3.695, p = 0.024) within the beta-3 frequency band. In the EC condition, there was a negative correlation between pain disability and connectivity in the beta-3 frequency band between the left ACC and the left primary somatosensory cortex (SI; r = -0.442, p = 0.043). In the EO condition, there was a negative correlation between central sensitization severity and lagged coherence connectivity in the alpha-2 frequency band between the right ACC and left SI (r = 0.428, p = 0.014). Moreover, in the EO-EC comparison, the lagged coherence connection between the left DLPFC and right INS, indexed by the gamma frequency band, showed a negative correlation with serum BDNF levels (r = -0.506, p = 0.012). Conclusion: These findings indicate that increased connectivity between different pain processing circuits, particularly in the beta-3 frequency band during rest, may serve as neural biomarkers for the chronic pain brain signature associated with neuroplasticity and the severity of FM symptoms.

2.
J Headache Pain ; 22(1): 147, 2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34895135

RESUMEN

BACKGROUND: Accumulating studies have indicated a wide range of brain alterations with respect to the structure and function of classic trigeminal neuralgia (CTN). Given the dynamic nature of pain experience, the exploration of temporal fluctuations in interregional activity covariance may enhance the understanding of pain processes in the brain. The present study aimed to characterize the temporal features of functional connectivity (FC) states as well as topological alteration in CTN. METHODS: Resting-state functional magnetic resonance imaging and three-dimensional T1-weighted images were obtained from 41 CTN patients and 43 matched healthy controls (HCs). After group independent component analysis, sliding window based dynamic functional network connectivity (dFNC) analysis was applied to investigate specific FC states and related temporal properties. Then, the dynamics of the whole brain topological organization were estimated by calculating the coefficient of variation of graph-theoretical properties. Further correlation analyses were performed between all these measurements and clinical data. RESULTS: Two distinct states were identified. Of these, the state 2, characterized by complicated coupling between default mode network (DMN) and cognitive control network (CC) and tight connections within DMN, was expressed more in CTN patients and presented as increased fractional windows and dwell time. Moreover, patients switched less frequently between states than HCs. Regarding the dynamic topological analysis, disruptions in global graph-theoretical properties (including network efficiency and small-worldness) were observed in patients, coupled with decreased variability in nodal efficiency of anterior cingulate cortex (ACC) in the salience network (SN) and the thalamus and caudate nucleus in the subcortical network (SC). The variation of topological properties showed negative correlation with disease duration and attack frequency. CONCLUSIONS: The present study indicated disrupted flexibility of brain topological organization under persistent noxious stimulation and further highlighted the important role of "dynamic pain connectome" regions (including DMN/CC/SN) in the pathophysiology of CTN from the temporal fluctuation aspect. Additionally, the findings provided supplementary evidence for current knowledge about the aberrant cortical-subcortical interaction in pain development.


Asunto(s)
Conectoma , Neuralgia del Trigémino , Encéfalo/diagnóstico por imagen , Giro del Cíngulo , Humanos , Imagen por Resonancia Magnética , Neuralgia del Trigémino/diagnóstico por imagen
3.
Rheum Dis Clin North Am ; 47(2): 197-213, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33781490

RESUMEN

Inflammatory back pain is characteristic of spondyloarthritis (SpA); however, this pain may not respond to treatment with NSAIDs or biologics. Pain is multifactorial and a combination of mechanical and inflammatory factors. A growing body of literature examines the impact of emotions on pain in SpA; many patients with this condition suffer from depression and fibromyalgia. Advanced imaging techniques can investigate the interplay of various brain networks in pain perception. Animal models have helped understand the interplay between the immune and nervous systems in pain generation and have highlighted differences in pain perception between the sexes.


Asunto(s)
Fibromialgia , Espondiloartritis , Animales , Dolor de Espalda , Encéfalo/diagnóstico por imagen , Humanos , Neuroimagen , Espondiloartritis/complicaciones , Espondiloartritis/diagnóstico por imagen
4.
Pain Rep ; 1(4): e577, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29392197

RESUMEN

Pain, by definition, is a subjective experience, and as such its presence has usually been based on a self-report. However, limitations of self-reports for pain diagnostics, particularly for legal and insurance purposes, has led some to consider a brain-imaging-based objective measure of pain. This review will provide an overview of (1) differences between pain and nociception, (2) intersubject variability in pain perception and the associated brain structures and functional circuits, and (3) capabilities and limitations of current brain-imaging technologies. I then discuss how these factors impact objective proxies of pain. Finally, the ethical, privacy, and legal implications of a brain-imaging-based objective measure of pain are considered as potential future technological developments necessary to create a so-called "painometer test."

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA