Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
J Microencapsul ; 41(7): 564-575, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39268923

RESUMEN

AIM: To investigate the conformational changes in human serum albumin (HSA) caused by chemical (CD) and thermal denaturation (TD) at pH 7.4 and 9.9, crucial for designing controlled drug delivery systems with paclitaxel (PTX). METHODS: Experimental and computational methods, including differential scanning calorimetry (DSC), UV-Vis and intrinsic fluorescence spectroscopy, mean diameter, polydispersity index (PDI), ζ-potential, encapsulation efficiency (EE), in vitro release and protein docking studies were conducted to study the HSA denaturation and nanoparticles (NPs) preparation. RESULTS: TD at pH 7.4 produced smaller NPs (287.1 ± 12.9 nm) than CD at pH 7.4 with NPs (584.2 ± 47.7 nm). TD at pH 9.9 exhibited high EE (97.3 ± 0.2%w/w) with rapid PTX release (50% within 1h), whereas at pH 7.4 (96.4 ± 2.1%w/w), release only 40%. ζ-potentials were around -30 mV. CONCLUSION: Buffer type and pH significantly influence NP properties. TD in PBS at pH 7.4, provided optimal conditions for a stable and efficient drug delivery system.


Asunto(s)
Nanopartículas , Paclitaxel , Albúmina Sérica Humana , Paclitaxel/química , Paclitaxel/administración & dosificación , Paclitaxel/farmacocinética , Humanos , Nanopartículas/química , Albúmina Sérica Humana/química , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Fosfatos/química , Tampones (Química) , Concentración de Iones de Hidrógeno , Simulación del Acoplamiento Molecular , Liberación de Fármacos
2.
Clinics (Sao Paulo) ; 79: 100458, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39084065

RESUMEN

BACKGROUND: The influences of Oxycodone (OXY) combined with Paclitaxel (PTX) on breast cancer cells are unclear. The present study aimed to examine the effects of OXY combined with PTX on the proliferation, apoptosis, and migration of human breast cancer SKBR3 cells and the underlying mechanism. METHODS: The proliferation, apoptosis and invasion of SKBR3 cells were assessed by CCK-8, colony formation assay, flowcytometric, Transwell assay and scratch assays, respectively. In addition, Western blotting was used to detect the expression of related proteins in these cells. The autophagic bodies were observed under a transmission electron microscope. RESULTS: OXY (0.25, 0.5 and 1 mM) significantly inhibited the viability, colony-forming, migration, and invasion of SKBR3 cells as compared to the control group. Furthermore, OXY (0.25, 0.5 and 1 mM) markedly induced the apoptosis of SKBR3 cells and the levels of apoptosis-related proteins. In addition, OXY (0.25, 0.5 and 1 mM) and PTX inhibited the proliferation of SKBR3 cells synergistically as compared to PTX group in vitro. Moreover, OXY (0.25, 0.5 and 1 mM) significantly elevated the PTX-induced apoptosis in SKBR3 cells via downregulating the expression of N-cadherin, Becline-1 LC3-Ⅱ, p-Akt and p-mTOR and upregulating E-cadherin expression. Compared with the control group, OXY (1 mM) treatment induced autophagy in SKBR3 cells. CONCLUSIONS: The present study indicates that OXY can enhance the antitumor effect of PTX on breast cancer in vitro. Hence, the combination of OXY with PTX may serve as a potential strategy for the treatment of breast cancer.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Movimiento Celular , Proliferación Celular , Oxicodona , Paclitaxel , Humanos , Paclitaxel/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Línea Celular Tumoral , Oxicodona/farmacología , Movimiento Celular/efectos de los fármacos , Sinergismo Farmacológico , Supervivencia Celular/efectos de los fármacos , Autofagia/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Reproducibilidad de los Resultados , Western Blotting
3.
Int J Cardiol Cardiovasc Risk Prev ; 22: 200292, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38872732

RESUMEN

Background: Acute cardiac complications post-chemotherapy is rare. Stress cardiomyopathy, one of these complications, should be considered in differential diagnoses as its symptoms closely resemble those of acute myocardial infarction and can lead to mortality. Objective: The objective of this paper is to describe Takotsubo syndrome (TTS) as an acute complication following combined chemotherapy in a patient with significant thromboembolic burden and metastatic cervical cancer. Case: A 61-year-old female patient with a diagnosis of metastatic cervical cancer experienced acute chest pain. Elevated troponin levels and abnormalities in the electrocardiogram initially suggested an acute myocardial infarction, occurring after a chemotherapy session involving Carboplatin and Paclitaxel infusion. Although initial treatment targeted myocardial infarction, further diagnostic evaluations including coronary angiography and cardiac magnetic resonance imaging revealed no coronary artery disease but identified features consistent with stress cardiomyopathy, indicative of Takotsubo syndrome (TTS). This diagnosis led to an improvement in symptoms and a resolution of the acute changes observed. Conclusion: Stress cardiomyopathy, particularly TTS, is being increasingly recognized as an acute complication associated with combined chemotherapy regimens. The potential cardiotoxic effects of these chemotherapy agents demand careful monitoring and evaluation in patients undergoing oncological treatment, underscoring the importance of integrating cardioprotective strategies into the management of these patients.

4.
Chem Phys Lipids ; 263: 105418, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38944410

RESUMEN

Cholesterol-rich nanoemulsion (LDE) can carry chemotherapeutic agents in the circulation and can concentrate those agents in the neoplastic and inflammatory tissues. This method improves the biodistribution of the drug and reduces toxicity. However, the structural stability of LDE particles, without or with associated drugs, has not been extensively investigated. The aim of the present study is to investigate the structural stability of LDE and LDE associated to paclitaxel, etoposide or methotrexate in aqueous solution over time by small-angle X-ray scattering (SAXS and Ultra SAXS) and dynamic light scattering (DLS). The results show that LDE and LDE associated with those chemotherapeutic agents had reproducible and stable particle diameter, physical structure, and aggregation behavior over 3-month observation period. As estimated from both DLS and Ultra-SAXS methods, performed at pre-established intervals, the average particle diameter of LDE alone was approx. 32 nm, of LDE-paclitaxel was 31 nm, of LDE-methotrexate was 35 nm and of LDE-etoposide was 36 nm. Ultra-SAXS analysis showed that LDE nanoparticles were quasi-spherical, and SAXS showed that drug molecules inside the particles showed a layered-like organization. Formulations of LDE with associated PTX, ETO or MTX were successfully tested in animal experiments and in patients with cancer or with cardiovascular disease, showing markedly low toxicity, good tolerability and possible superior pharmacological action. Our results may be useful for ensuing clinical trials of this novel Nanomedicine tool, by strengthening the knowledge of the structural aspects of those LDE formulations.


Asunto(s)
Colesterol , Emulsiones , Metotrexato , Nanopartículas , Emulsiones/química , Colesterol/química , Nanopartículas/química , Metotrexato/química , Humanos , Animales , Tamaño de la Partícula , Paclitaxel/química , Paclitaxel/farmacología , Dispersión del Ángulo Pequeño , Etopósido/química , Antineoplásicos/química , Antineoplásicos/farmacología , Difracción de Rayos X , Estructura Molecular
5.
Explor Target Antitumor Ther ; 5(2): 278-295, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745771

RESUMEN

Aim: Triple negative breast cancer (TNBC) is usually treated with high doses of paclitaxel, whose effectiveness may be modulated by the action of environmental contaminants such as hexachlorobenzene. High doses of paclitaxel cause adverse effects such as low cellular selectivity and the generation of resistance to treatment due to an increase in the expression of multidrug resistance proteins (MRPs). These effects can be reduced using a metronomic administration scheme with low doses. This study aimed to investigate whether hexachlorobenzene modulates the response of cells to conventional chemotherapy with paclitaxel or metronomic chemotherapy with paclitaxel plus carbachol, as well as to study the participation of the MRP ATP-binding cassette transporter G2 (ABCG2) in human TNBC MDA-MB231 cells. Methods: Cells were treated with hexachlorobenzene alone or in combination with conventional or metronomic chemotherapies. The effects of treatments on cell viability were determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the nuclear factor kappa B pathway participation was evaluated using a selective inhibitor. ABCG2 expression and its modulation were determined by western blot. Results: Results confirmed that paclitaxel reduces MDA-MB231 cell viability in a concentration-dependent manner. Results also showed that both conventional and metronomic chemotherapies reduced cell viability with similar efficacy. Although hexachlorobenzene did not modify cell viability per se, it did reverse the effect induced by the conventional chemotherapy, without affecting the efficacy of the metronomic chemotherapy. Additionally, a differential modulation of ABCG2 expression was determined, mediated by the nuclear factor kappa B pathway, which was directly related to the modulation of cell sensitivity to another cycle of paclitaxel treatment. Conclusions: The findings indicate that, in human TNBC MDA-MB231 cells, in the presence of hexachlorobenzene, the metronomic combination of paclitaxel plus carbachol is more effective in affecting the tumor biology than the conventional therapeutic administration scheme of paclitaxel.

6.
Oncol Lett ; 27(5): 219, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38586206

RESUMEN

Lung cancer is the leading cause of cancer-related morbidity and mortality worldwide. The initial treatment of lung cancer depends on the definition of the tumor type and its staging. The most common treatment is chemotherapy, and the first-line treatment is a combination of carboplatin and paclitaxel. Although this treatment has good efficacy, there is a high prevalence of adverse events, particularly hematological reactions. Studies on new biomarkers related to these adverse events, such as circulating microRNAs (miRNAs/miRs), are important for optimizing the quality of life of patients. miRNAs have high stability in several biological fluids and they have specific expressions in different tissues or pathologies. Thus, the present study aimed to assess the relationship between circulating miRNAs and adverse hematologic reactions caused by treatment with carboplatin + paclitaxel in patients with lung cancer. Blood was collected from patients before and 15 days after chemotherapy for hematological adverse reaction analysis, microarray and quantitative (q)PCR validation. Adverse reactions were classified according to the Common Terminology Criteria for Adverse Events v4.0. Microarray analysis was performed using plasma from six patients without anemia and six patients with anemia, and nine miRNAs were differentially expressed. miR-1273g-3p, miR-3613-5p and miR-455-3p, identified using microarray, were assessed using qPCR in 20 patients without anemia and 26 patients with anemia. Bioinformatic analyses of miR-455-3p were performed using miRWalk, the Database for Annotation, Visualization and Integrated Discovery and GeneMania software. Microarray analysis of patients with and without anemia revealed nine significant differentially-expressed plasma miRNAs among these patients. Of these, miR-1273g-3p, miR-3613-5p and miR-455-3p were chosen for further assessment. Only miR-455-3p demonstrated a significant reduction in expression (P=0.04) between the groups before chemotherapy with carboplatin + paclitaxel. Bioinformatics analysis of miR-455-3p revealed a relationship between this miRNA and the hematopoietic pathway, particularly with respect to the RUNX family transcription factor 1 (RUNX1) and TAL bHLH transcription factor 1, erythroid differentiation factor (TAL1) genes. The most prevalent adverse reactions in patients with lung cancer treated with carboplatin + paclitaxel were hematological, particularly anemia. This adverse reaction, caused by dysfunction of the hematopoietic system, may be explained by a possible association between the important genes in this system, RUNX1 and TAL1, and hsa-miR-455-3p.

7.
Front Cardiovasc Med ; 11: 1342832, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38450375

RESUMEN

Introduction: Studies in cholesterol-fed rabbits showed that anti-proliferative chemotherapeutic agents such as paclitaxel associated with solid lipid nanoparticles (LDE) have marked anti-atherosclerotic effects. In addition, association with LDE nearly abolishes paclitaxel toxicity. We investigated whether treatment with LDE-paclitaxel changes plaque progression by coronary CT angiography and is safe in patients with chronic coronary artery disease. Methods: We conducted a prospective, randomized, double-blind, placebo-controlled pilot study in patients with multi-vessel chronic coronary artery disease. Patients were randomized to receive IV infusions of LDE-paclitaxel (paclitaxel dose: 175 mg/m2 body surface) or LDE alone (placebo group), administered every 3 weeks for 18 weeks. All participants received guideline-directed medical therapy. Clinical and laboratory safety evaluations were made at baseline and every 3 weeks until the end of the study. Analysis of inflammatory biomarkers and coronary CTA was also performed at baseline and 4 weeks after treatment. Results: Forty patients aged 65.6 ± 8 years, 20 in LDE-paclitaxel and 20 in placebo group were enrolled. Among those, 58% had diabetes, 50% had myocardial infarction, and 91% were in use of statin and aspirin. Baseline demographics, risk factors, and laboratory results were not different between groups. In all patients, no clinical or laboratory toxicities were observed. From the baseline to the end of follow-up, there was a non-significant trend toward a decrease in IL-6 levels and hsCRP in the LDE-paclitaxel group (-16% and -28%, respectively), not observed in placebo. Regarding plaque progression analysis, variation in plaque parameter values was wide, and no difference between groups was observed. Conclusion: In patients with multivessel chronic coronary artery disease and optimized medical therapy, LDE-paclitaxel was safe and showed clues of potential benefits in reducing inflammatory biomarkers. Clinical Trial Registration: https://clinicaltrials.gov/study/NCT04148833, identifier (NCT04148833).

8.
Oncotarget ; 15: 117-122, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329732

RESUMEN

We recently discovered a putative paclitaxel response predictive biomarker for glioblastoma and breast cancer using the whole genome CRISPR knockout screen. The biomarker candidate was validated in two independent breast cancer patient cohorts that received taxane treatment. To further evaluate the potential application of this biomarker in the clinic for patients with glioblastoma, a prospective validation in cohorts of patients with glioblastoma is essential and will be performed as part of our ongoing phase II clinical trial (NCT04528680). The validation of novel biomarkers of susceptibility to therapy is critical to elucidate the efficacy signal of therapeutic agents. This is especially important in the context of glioblastoma, where therapeutic benefit is variable and unpredictable, leading to negative trials, yet the outcome of subset of patients has outperformed expectations.


Asunto(s)
Neoplasias de la Mama , Glioblastoma , Femenino , Humanos , Biomarcadores , Mama , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Paclitaxel/uso terapéutico , Ensayos Clínicos Fase II como Asunto
9.
Eur J Pharm Sci ; 192: 106638, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967657

RESUMEN

In this study, nanostructured lipid carriers (NLC) were developed and employed to obtain in situ thermosensitive formulations for the ductal administration and prolonged retention of drugs as a new strategy for breast cancer local treatment. NLC size was influenced by the type and concentration of the oil phase, surfactants, and drug incorporation, ranging from 221.6 to 467.5 nm. The type of liquid lipid influenced paclitaxel and 5-fluorouracil cytotoxicity, with tributyrin-containing NLC reducing IC50 values by 2.0-7.0-fold compared to tricaprylin NLC in MCF-7, T-47D and MDA-MB-231 cells. In spheroids, the NLCs reduced IC50 compared to either drug solution (3.2-6.2-fold). Although a significant reduction (1.26 points, p < 0.001) on the health index of Galleria mellonella larvae was observed 5 days after NLC administration, survival was not significantly reduced. To produce thermosensitive gels, the NLCs were incorporated in a poloxamer (11 %, w/w) dispersion, which gained viscosity (2-fold) at 37 °C. After 24 h, ∼53 % of paclitaxel and 83 % of 5-fluorouracil were released from the NLC; incorporation in the poloxamer gel further prolonged release. Intraductal administration of NLC-loaded gel increased the permanence of hydrophilic (2.2-3.0-fold) and lipophilic (2.1-2.3-fold) fluorescent markers in the mammary tissue compared to the NLC (as dispersion) and the markers solutions. In conclusion, these results contribute to improving our understanding of nanocarrier design with increased cytotoxicity and prolonged retention for the intraductal route. Tributyrin incorporation increased the cytotoxicity of paclitaxel and 5-fluorouracil in monolayer and spheroids, while NLC incorporation in thermosensitive gels prolonged tissue retention of both hydrophilic and hydrophobic compounds.


Asunto(s)
Neoplasias de la Mama , Nanoestructuras , Humanos , Femenino , Portadores de Fármacos/química , Neoplasias de la Mama/tratamiento farmacológico , Poloxámero , Lípidos/química , Nanoestructuras/química , Geles/química , Paclitaxel , Fluorouracilo , Tamaño de la Partícula
10.
J Oral Pathol Med ; 53(1): 42-52, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37946676

RESUMEN

BACKGROUND: Oral squamous cell carcinoma has high recurrence and cisplatin resistance. As cancer stem cells, autophagy, and sphingolipids have been appointed as associated with chemotherapy resistance, we tested combined treatments targeting autophagy and/or sphingolipid metabolism with paclitaxel using cisplatin-resistant oral squamous cell carcinoma cells. METHODS: Cisplatin-resistant oral squamous cell carcinoma cells were maintained under exposition to FTY720 and chloroquine combined with paclitaxel and submitted to viability, clonogenicity, and spheres formation assays. The xenograft tumor model using cisplatin-resistant CAL27 cells was adopted to examine the drug combinations' potential antitumoral efficacy. Using an animal model, sphingolipids profiles from plasma and tissue samples were obtained by liquid chromatography coupled to mass spectrometry to identify potential lipids associated with drug response. RESULTS AND DISCUSSION: Our results showed higher autophagic flux in cisplatin-resistant Ooral squamous cell carcinoma (CAL27 and SCC9) cells than in parental cells. The combinations of an autophagy inhibitor (chloroquine) or an autophagy inducer/sphingosine kinase 1 antagonist (FTY720) with paclitaxel (PTX) had a synergistic antitumor effect. Treated CisR cells lost clonogenicity and tumor sphere abilities and reduced proteins associated with proliferation, survival, and cancer stem cells. FTY720 plus PTX had higher antitumor efficacy than PTX against CAL27 CisR xenograft tumor formation. Additionally, increases in glucosylceramide, dehydroglucosylceramide, and sphingomyelin were presented in responsive tumors. CONCLUSION: FTY720 sensitizes cisplatin-resistant oral squamous cell carcinoma cells for paclitaxel.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Animales , Humanos , Cisplatino/farmacología , Paclitaxel/farmacología , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello , Apoptosis , Neoplasias de la Boca/tratamiento farmacológico , Esfingolípidos/farmacología , Cloroquina/farmacología , Línea Celular Tumoral , Resistencia a Antineoplásicos
11.
Cytokine ; 174: 156468, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38101167

RESUMEN

It has been shown that AMP-activated protein kinase (AMPK) is involved in the nociceptive processing. This observation has prompted us to investigate the effects of the AMPK activator metformin on the paclitaxel-induced mechanical allodynia, a well-established model of neuropathic pain. Mechanical allodynia was induced by four intraperitoneal (i.p) injections of paclitaxel (2 mg/kg.day) in mice. Metformin was administered per os (p.o.). Naltrexoneandglibenclamide were used to investigate mechanisms mediating metformin activity. Concentrations of cytokines in the dorsal root ganglia (DRG) and thalamus were determined. After a single p.o. administration, the two highest doses of metformin (500 and 1000 mg/kg) attenuated the mechanical allodynia. This response was attenuated by all doses of metformin (250, 500 and 1000 mg/kg) when two administrations, 2 h apart, were carried out. Naltrexone (5 and 10 mg/kg, i.p.), but not glibenclamide (20 and 40 mg/kg, p.o.), attenuated metformin activity. Concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and CXCL-1 in the DRG were increased after administration of paclitaxel. Metformin (1000 mg/kg) reduced concentrations of TNF-α, IL-1ß and CXCL-1 in the DRG. Concentration of IL-6, but not TNF-α, in the thalamus was increased after administration of paclitaxel. Metformin (1000 mg/kg) reduced concentration of IL-6 in the thalamus. In summary, metformin exhibits activity in the model of neuropathic pain induced by paclitaxel. This activity may be mediated by activation of opioidergic pathways and reduced production of TNF-α, IL-1ß and CXCL-1 in the DRG and IL-6 in the thalamus.


Asunto(s)
Metformina , Neuralgia , Ratones , Animales , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Paclitaxel/efectos adversos , Factor de Necrosis Tumoral alfa/metabolismo , Metformina/farmacología , Ganglios Espinales/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Interleucina-6/metabolismo , Citocinas/metabolismo , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Tálamo/metabolismo
12.
Clinics ; Clinics;79: 100458, 2024. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1574748

RESUMEN

Abstract Background: The influences of Oxycodone (OXY) combined with Paclitaxel (PTX) on breast cancer cells are unclear. The present study aimed to examine the effects of OXY combined with PTX on the proliferation, apoptosis, and migration of human breast cancer SKBR3 cells and the underlying mechanism. Methods: The proliferation, apoptosis and invasion of SKBR3 cells were assessed by CCK-8, colony formation assay, flowcytometric, Transwell assay and scratch assays, respectively. In addition, Western blotting was used to detect the expression of related proteins in these cells. The autophagic bodies were observed under a transmission electron microscope. Results: OXY (0.25, 0.5 and 1 mM) significantly inhibited the viability, colony-forming, migration, and invasion of SKBR3 cells as compared to the control group. Furthermore, OXY (0.25, 0.5 and 1 mM) markedly induced the apoptosis of SKBR3 cells and the levels of apoptosis-related proteins. In addition, OXY (0.25, 0.5 and 1 mM) and PTX inhibited the proliferation of SKBR3 cells synergistically as compared to PTX group in vitro. Moreover, OXY (0.25, 0.5 and 1 mM) significantly elevated the PTX-induced apoptosis in SKBR3 cells via downregulating the expression of N-cadherin, Becline-1 LC3-II, p-Akt and p-mTOR and upregulating E-cadherin expression. Compared with the control group, OXY (1 mM) treatment induced autophagy in SKBR3 cells. Conclusions: The present study indicates that OXY can enhance the antitumor effect of PTX on breast cancer in vitro. Hence, the combination of OXY with PTX may serve as a potential strategy for the treatment of breast cancer.

13.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38004444

RESUMEN

Among broad-spectrum anticancer agents, paclitaxel (PTX) has proven to be one of the most effective against solid tumors for which more specific treatments are lacking. However, drawbacks such as neurotoxicity and the development of resistance reduce its therapeutic efficacy. Therefore, there is a need for compounds able to improve its activity by synergizing with it or potentiating its effect, thus reducing the doses required. We investigated the interaction between PTX and tannins, other compounds with anticancer activity known to act as repressors of several proteins involved in oncological pathways. We found that both tannic acid (TA) and ethyl gallate (EG) strongly potentiate the toxicity of PTX in Hep3B cells, suggesting their utility in combination therapy. We also found that AT and EG promote tubulin polymerization and enhance the effect of PTX on tubulin, suggesting a direct interaction with tubulin. Biochemical experiments confirmed that TA, but not EG, binds tubulin and potentiates the apparent binding affinity of PTX for the tubulin binding site. Furthermore, the molecular docking of TA to tubulin suggests that TA can bind to two different sites on tubulin, one at the PTX site and the second at the interface of α and ß-tubulin (cluster 2). The binding of TA to cluster 2 could explain the overstabilization in the tubulin + PTX combinatorial assay. Finally, we found that EG can inhibit PTX-induced expression of pAkt and pERK defensive protein kinases, which are involved in resistance to PXT, by limiting cell death (apoptosis) and favoring cell proliferation and cell cycle progression. Our results support that tannic acid and ethyl gallate are potential chemotherapeutic agents due to their potentiating effect on paclitaxel.

14.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37765025

RESUMEN

The efficacy of 5-((4-methoxyphenyl)thio)benzo[c][1,2,5] thiodiazole (MTDZ) in mitigating paclitaxel (PTX)-induced peripheral neuropathy was investigated in male and female Swiss mice. The study examined the effects of MTDZ on various pathways, including transient receptor potential cation channel subfamily V member 1 (TRPV1), glutamatergic, nitrergic, guanylate cyclase (cGMP), serotonergic, and opioidergic. Mice received intraperitoneal PTX (2 mg/kg) or vehicle on days 1, 2, and 3, followed by oral MTDZ (1 mg/kg) or vehicle from days 3 to 14. Mechanical and thermal sensitivities were assessed using Von Frey and hot plate tests on days 8, 11, and 14. The open field test evaluated locomotion and exploration on day 12. On day 15, nitrite and nitrate (NOx) levels and Ca2+-ATPase activity in the cerebral cortex and spinal cord were measured after euthanizing the animals. MTDZ administration reversed the heightened mechanical and thermal sensitivities induced by PTX in male and female mice without affecting locomotion or exploration. MTDZ also modulated multiple pathways, including glutamatergic, NO/L-arginine/cGMP, serotonergic (5-HT1A/1B), opioid, and TRPV1 pathways. Additionally, MTDZ reduced NOx levels and modulated Ca2+-ATPase activity. In conclusion, MTDZ effectively alleviated PTX-induced peripheral neuropathy and demonstrated multi-targeted modulation of pain-related pathways. Its ability to modulate multiple pathways, reduce NOx levels, and modulate Ca2+-ATPase activity makes it a potential pharmacological candidate for peripheral neuropathy, acute nociceptive, and inflammatory conditions. Further research is needed to explore its therapeutic potential in these areas.

15.
Cancer Chemother Pharmacol ; 92(6): 485-499, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37725114

RESUMEN

PURPOSE: Globally breast cancer accounts for 24.5% in incidence and 15.5% in cancer deaths in women. The triple-negative subtype lacks any specific therapy and is treated with chemotherapy, resulting in significant side-effects. We aimed to investigate if the dose of chemotherapeutic drugs could be diminished by co-administering it with the ß2-agonist salbutamol. METHODS: Cell proliferation was measured by thymidine incorporation; gene expression, by real-time PCR and protein phosphorylation by WB. Apoptosis was assessed by acridine orange / ethidium bromide and TUNEL tests. Public patient databases were consulted. Cells were inoculated to nude mice and their growth assessed. RESULTS: The ß2-agonist salbutamol synergizes in MDA-MB-231 cells in vitro with paclitaxel and doxorubicin on cell proliferation through ADRB2 receptors, while the ß-blocker propranolol does not. The expression of this receptor was assessed in patient databases and other cell lines. Triple negative samples had the lowest expression. Salbutamol and paclitaxel decreased MDA-MB-231 cell proliferation while their combination further inhibited it. The pathways involved were analyzed. When these cells were inoculated to nude mice, paclitaxel and salbutamol inhibited tumor growth. The combined effect was significantly greater. Paclitaxel increased the expression of MDR1 while salbutamol partially reversed this increase. CONCLUSION: While the effect of salbutamol was mainly on cell proliferation, suboptimal concentrations of paclitaxel provoked a very important enhancement of apoptosis. The latter enhanced transporter proteins as MDR1, whose expression were diminished by salbutamol. The expression of ADRB2 should be assessed in the biopsy or tumor to eventually select patients that could benefit from salbutamol repurposing.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Animales , Ratones , Humanos , Femenino , Paclitaxel , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Ratones Desnudos , Albuterol/farmacología , Albuterol/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Propranolol , Agonistas Adrenérgicos/farmacología , Agonistas Adrenérgicos/uso terapéutico , Apoptosis
16.
Biol Res ; 56(1): 47, 2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37574561

RESUMEN

Chemotherapeutic drugs can cause reproductive damage by affecting sperm quality and other aspects of male fertility. Stem cells are thought to alleviate the damage caused by chemotherapy drugs and to play roles in reproductive protection and treatment. This study aimed to explore the effects of human umbilical cord mesenchymal stem cells (hUC-MSCs) on alleviating paclitaxel (PTX)-induced spermatogenesis and male fertility defects. An in vivo PTX-induced mice model was constructed to evaluate the reproductive toxicity and protective roles of hUC-MSCs in male fertility improvement. A 14 day PTX treatment regimen significantly attenuated mice spermatogenesis and sperm quality, including affecting spermatogenesis, reducing sperm counts, and decreasing sperm motility. hUC-MSCs treatment could significantly improve sperm functional indicators. Mating experiments with normal female mice and examination of embryo development at 7.5 days post-coitum (dpc) showed that hUC-MSCs restored male mouse fertility that was reduced by PTX. In IVF experiments, PTX impaired sperm fertility and blastocyst development, but hUC-MSCs treatment rescued these indicators. hUC-MSCs' protective role was also displayed through the increased expression of the fertility-related proteins HSPA2 and HSPA4L in testes with decreased expression in the PTX-treated group. These changes might be related to the PTX-induced decreases in expression of the germ cell proliferation protein PCNA and the meiosis proteins SYCP3, MLH1, and STRA8, which were restored after hUC-MSCs treatment. In the PTX-treated group, the expression of testicular antioxidant proteins SIRT1, NRF2, CAT, SOD1, and PRDX6 was significantly decreased, but hUC-MSCs could maintain these expressions and reverse PTX-related increases in BAX/BCL2 ratios. hUC-MSCs may be a promising agent with antioxidant and anti-apoptosis characteristics that can maintain sperm quality following chemotherapy treatment.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Masculino , Ratones , Femenino , Animales , Paclitaxel/efectos adversos , Paclitaxel/metabolismo , Antioxidantes/metabolismo , Cordón Umbilical , Motilidad Espermática , Semen , Espermatogénesis , Fertilidad
17.
Micromachines (Basel) ; 14(7)2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37512701

RESUMEN

Conventional cancer therapies suffer from nonspecificity, drug resistance, and a poor bioavailability, which trigger severe side effects. To overcome these disadvantages, in this study, we designed and evaluated the in vitro potential of paclitaxel-loaded, PLGA-gold, half-shell nanoparticles (PTX-PLGA/Au-HS NPs) conjugated with cyclo(Arg-Gly-Asp-Phe-Lys) (cyRGDfk) as a targeted chemo-photothermal therapy system in HeLa and MDA-MB-231 cancer cells. A TEM analysis confirmed the successful gold half-shell structure formation. High-performance liquid chromatography showed an encapsulation efficiency of the paclitaxel inside nanoparticles of more than 90%. In the release study, an initial burst release of about 20% in the first 24 h was observed, followed by a sustained drug release for a period as long as 10 days, reaching values of about 92% and 49% for NPs with and without near infrared laser irradiation. In in vitro cell internalization studies, targeted nanoparticles showed a higher accumulation than nontargeted nanoparticles, possibly through a specific interaction of the cyRGDfk with their homologous receptors, the ανß3 y ανß5 integrins on the cell surface. Compared with chemotherapy or photothermal treatment alone, the combined treatment demonstrated a synergistic effect, reducing the cell viability to 23% for the HeLa cells and 31% for the MDA-MB-231 cells. Thus, our results indicate that these multifuncional nanoparticles can be considered to be a promising targeted chemo-photothermal therapy system against cancer.

18.
Artículo en Inglés | MEDLINE | ID: mdl-37202892

RESUMEN

Nanomaterials have been offering improvements in different areas due to their unique characteristics, but cytotoxicity associated with their use is still a topic that concerns researchers. Causing cell death, at first glance, may seem to be a problem and the studies regarding signaling pathways involved in this toxicity are still in their infancy. However, there are scenarios in which this feature is desirable, such as in cancer treatment. Anti-cancer therapies aim to eliminate the cells of malignant tumors as selectively as possible. From this perspective, titanium dioxide (TiO2) nanoparticles (NPs) deserve to be highlighted as important and efficient tools. Besides being able to induce cell death, these NPs can also be used to deliver anti-cancer therapeutics. These drugs can originate from natural sources, such as paclitaxel (an antitumoral molecule derived from a vegetal source). The present review aims to explore the recent knowledge of TiO2 NPs as nanocarriers (promoting the nanodelivery of paclitaxel) and as nanosensitizers to be used in phototherapies and/or sonodynamic therapy aiming to treat cancer. Signaling pathways triggered by this nanomaterial inside cells leading to apoptosis (a desirable fate when targeting tumor cells) and challenges related to the clinical translation of these NPs will also receive attention in the future.

19.
Int J Mol Sci ; 24(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37176065

RESUMEN

Paclitaxel, a widely used cancer chemotherapeutic agent, has high incidence of neurotoxicity associated with the production of neuropathic pain, for which only duloxetine has shown significant but moderate analgesic effect. Since statins, classically used to reduce hypercholesterolemia, have shown antinociceptive effect in preclinical studies on neuropathic pain, we studied whether the antinociceptive efficacy of duloxetine could be synergistically potentiated by rosuvastatin in a model of paclitaxel-induced neuropathy in mice. The astrocytic and microglial responses in the spinal cord of paclitaxel-treated mice were also assessed by measuring GFAP and CD11b proteins, respectively. Paclitaxel treatment did not impair motor coordination and balance in rotarod testing. Rosuvastatin, duloxetine, and the rosuvastatin/duloxetine combination (combined at equieffective doses) dose-dependently decreased mechanical allodynia (ED30, von Frey testing) and thermal hyperalgesia (ED50, hot plate testing) in paclitaxel-treated mice. Isobolographic analysis showed a superadditive interaction for rosuvastatin and duloxetine, as both the ED30 and ED50 for the rosuvastatin/duloxetine combination contained only a quarter of each drug compared to the individual drugs. The rosuvastatin/duloxetine combination reversed paclitaxel-induced GFAP overexpression, indicating that such effects might depend in part on astrocyte inactivation. Results suggest that statins could be useful in synergistically enhancing the efficacy of duloxetine in some chemotherapy-induced neuropathic conditions.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Neuralgia , Ratones , Animales , Paclitaxel/efectos adversos , Clorhidrato de Duloxetina/farmacología , Clorhidrato de Duloxetina/uso terapéutico , Rosuvastatina Cálcica/efectos adversos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Dimensión del Dolor , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/complicaciones , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Analgésicos/efectos adversos
20.
Pharmaceutics ; 15(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36986678

RESUMEN

Melanoma is the most aggressive and metastasis-prone form of skin cancer. Conventional therapies include chemotherapeutic agents, either as small molecules or carried by FDA-approved nanostructures. However, systemic toxicity and side effects still remain as major drawbacks. With the advancement of nanomedicine, new delivery strategies emerge at a regular pace, aiming to overcome these challenges. Stimulus-responsive drug delivery systems might considerably reduce systemic toxicity and side-effects by limiting drug release to the affected area. Herein, we report the development of paclitaxel-loaded lipid-coated manganese ferrite magnetic nanoparticles (PTX-LMNP) as magnetosomes synthetic analogs, envisaging the combined chemo-magnetic hyperthermia treatment of melanoma. PTX-LMNP physicochemical properties were verified, including their shape, size, crystallinity, FTIR spectrum, magnetization profile, and temperature profile under magnetic hyperthermia (MHT). Their diffusion in porcine ear skin (a model for human skin) was investigated after intradermal administration via fluorescence microscopy. Cumulative PTX release kinetics under different temperatures, either preceded or not by MHT, were assessed. Intrinsic cytotoxicity against B16F10 cells was determined via neutral red uptake assay after 48 h of incubation (long-term assay), as well as B16F10 cells viability after 1 h of incubation (short-term assay), followed by MHT. PTX-LMNP-mediated MHT triggers PTX release, allowing its thermal-modulated local delivery to diseased sites, within short timeframes. Moreover, half-maximal PTX inhibitory concentration (IC50) could be significantly reduced relatively to free PTX (142,500×) and Taxol® (340×). Therefore, the dual chemo-MHT therapy mediated by intratumorally injected PTX-LMNP stands out as a promising alternative to efficiently deliver PTX to melanoma cells, consequently reducing systemic side effects commonly associated with conventional chemotherapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA