Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 677(Pt B): 151-160, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39142156

RESUMEN

The development of novel negative electrode (anode) materials for efficient aqueous supercapacitors (SCs) remains appealing yet significantly challenging. Here we propose an aniline tetramer conjugated nitrogen-doped graphene aerogel (AT-NGA) as the anode material, exhibiting a maximum capacitance of 699.1F g-1 under 1 A/g in 1 M H2SO4 as well as a long lifespan of 6,000 cycles at all pH levels. In particular, its capacitive contribution is 94.1 %, superior to the best pseudocapacitive materials known. To evaluate its pH-universality, we assembled three asymmetric SCs, namely, AT-NGA//1 M H2SO4//graphene aerogel, AT-NGA//1 M Na2SO4//NaMnO2-x and AT-NGA//1 M KOH//NiCoFe layered double hydroxide. The acid device delivers maximal energy and power densities of 35.8 mWh g-1 and 13.0 W/g, the neutral device achieves a maximal energy and power densities of 71.8 mWh g-1 and 33.0 W/g, and the base device exhibits a maximal energy and power densities of 48.2 mWh g-1 and 18.0 W/g, respectively. All the SCs display an outstanding cycling performance over 5,000 cycles (especially, 96 % capacitance retention for the acidic device after 12,000 cycles). Our design can also be expanded to prepare other redox-active anode materials for efficient aqueous SC applications.

2.
Small ; : e2403353, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180455

RESUMEN

Constructing high-entropy alloys (HEAs) with core-shell (CS) nanostructure is efficient for enhancing catalytic activity. However, it is extremely challenging to incorporate the CS structure with HEAs. Herein, PtCoNiMoRh@Rh CS nanoparticles (PtCoNiMoRh@Rh) with ∼5.7 nm for pH-universal hydrogen evolution reaction (HER) are reported for the first time. The PtCoNiMoRh@Rh just require 9.1, 24.9, and 17.1 mV to achieve -10 mA cm-2 in acid, neutral, and alkaline electrolyte, and the corresponding mass activity are 5.8, 2.79, and 91.8 times higher than that of Rh/C. Comparing to PtCoNiMoRh nanoparticles, the PtCoNiMoRh@Rh exhibit excellent HER activity attributed to the decrease of Rh 4d especially 4d5/2 unoccupied state induced by the multi-active sites in HEA, as well as the synergistic effect in Rh shell and HEA core. Theorical calculation exhibits that Rh-dyz, dx2, and dxz orbitals experience a negative shift with shell thickness increasing. The HEAs with CS structure would facilitate the rational design of high-performance HEAs catalysts.

3.
Small ; : e2406070, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128138

RESUMEN

This work reports a strategy that integrates the carbon nanotube (CNT) supporting, ultrathin carbon coating and oxygen defect generation to fabricate the RuO2 based catalysts toward the pH-universal hydrogen evolution reaction (HER) with high efficiencies. Specifically, the CNT supported RuO2 nanoparticles with ultrathin carbon loricae and rich oxygen vacancies at the surface (C@OV-RuO2/CNTs-325) have been synthesized. The C@OV-RuO2/CNTs-325 shows superior activities and excellent durability for the HER. It only requires overpotentials of 36.1, 18.0, and 19.3 mV to deliver -10 mA cm-2 in the acidic, neutral, and alkaline media, respectively. Its HER activities are comparable to that of the Pt/C in the acidic media but higher than those of the Pt/C in the neutral and alkaline media. The C@OV-RuO2/CNTs-325 shows excellent HER durability with no activity losses for > 500 h in the acidic, neutral or alkaline media at -250 mA cm-2. The density-functional-theory calculations indicate that the CNT supporting, the carbon coating, and the OVs can modulate the d-band centers of Ru, increasing the HER activities of C@OV-RuO2/CNTs-325, and stabilize the Ru atoms in the catalyst, increasing the durability of the C@OV-RuO2/CNTs-325. More interestingly, the C@OV-RuO2/CNTs-325 shows great potential for practical applications toward overall seawater splitting.

4.
Small ; : e2400244, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721969

RESUMEN

Practical applications of the hydrogen evolution reaction (HER) rely on the development of highly efficient, stable, and low-cost catalysts. Tuning the electronic structure, morphology, and architecture of catalysts is an important way to realize efficient and stable HER electrocatalysts. Herein, Co-doped Cu3P-based sugar-gourd structures (Co─Cu3P/CF) are prepared on copper foam as active electrocatalysts for hydrogen evolution. This hierarchical structure facilitates fast mass transport during electrocatalysis. Notably, the introduction of Co not only induces a charge redistribution but also leads to lattice-mismatch on the atomic scale, which creates defects and performs as additional active sites. Therefore, Co─Cu3P/CF requires an overpotential of only 81, 111, 185, and 230 mV to reach currents of 50, 100, 500, and 1000 mA cm-2 in alkaline media and remains stable after 10 000 CV cycles in a row and up to 110 h i-t stability tests. In addition, it also shows excellent HER performance in water/seawater electrolytes of different pH values. Experimental and DFT show that the introduction of Co modulates the electronic and energy level structures of the catalyst, optimizes the adsorption and desorption behavior of the intermediate, reduces the water dissociation energy barrier during the reaction, accelerates the Volmer step reaction, and thus improves the HER performance.

5.
Angew Chem Int Ed Engl ; 63(32): e202408412, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38801019

RESUMEN

The practical application of the electrocatalytic CO2 reduction reaction (CO2RR) to form formic acid fuel is hindered by the limited activation of CO2 molecules and the lack of universal feasibility across different pH levels. Herein, we report a doping-engineered bismuth sulfide pre-catalyst (BiS-1) that S is partially retained after electrochemical reconstruction into metallic Bi for CO2RR to formate/formic acid with ultrahigh performance across a wide pH range. The best BiS-1 maintains a Faraday efficiency (FE) of ~95 % at 2000 mA cm-2 in a flow cell under neutral and alkaline solutions. Furthermore, the BiS-1 catalyst shows unprecedentedly high FE (~95 %) with current densities from 100 to 1300 mA cm-2 under acidic solutions. Notably, the current density can reach 700 mA cm-2 while maintaining a FE of above 90 % in a membrane electrode assembly electrolyzer and operate stably for 150 h at 200 mA cm-2. In situ spectra and density functional theory calculations reveals that the S doping modulates the electronic structure of Bi and effectively promotes the formation of the HCOO* intermediate for formate/formic acid generation. This work develops the efficient and stable electrocatalysts for sustainable formate/formic acid production.

6.
Small ; : e2400783, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573959

RESUMEN

Endowing conventional materials with specific functions that are hardly available is invariably of significant importance but greatly challenging. TiO2 is proven to be highly active for the photocatalytic hydrogen evolution while intrinsically inert for electrocatalytic hydrogen evolution reaction (HER) due to its poor electrical conductivity and unfavorable hydrogen adsorption/desorption behavior. Herein, the first activation of inert TiO2 for electrocatalytic HER is demonstrated by synergistically modulating the positions of d-band center and triggering hydrogen spillover through the dual doping-induced partial phase transition. The N, F co-doping-induced partial phase transition from anatase to rutile phase in TiO2 (AR-TiO2|(N,F)) exhibits extraordinary HER performance with overpotentials of 74, 80, and 142 mV at a current density of 10 mA cm-2 in 1.0 M KOH, 0.5 M H2SO4, and 1.0 M phosphate-buffered saline electrolytes, respectively, which are substantially better than pure TiO2, and even superior to the benchmark Pt/C catalysts. These findings may open a new avenue for the development of low-cost alternative to noble metal catalysts for electrocatalytic hydrogen production.

7.
Small ; 20(31): e2400045, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38453678

RESUMEN

Emerging photoelectrochemical (PEC) photodetectors (PDs) have notable advantages over conventional PDs and have attracted extensive attention. However, harsh liquid environments, such as those with high corrosivity and attenuation, substantially restrict their widespread application. Moreover, most PEC PDs are constructed by assembling numerous nanostructures on current collector substrates, which inevitably contain abundant interfaces and defects, thus greatly weakening the properties of PDs. To address these challenges, a high-performance pH-universal PEC ultraviolet (UV) PD based on a whole single-crystal integrated self-supporting 4H-SiC nanopore array photoelectrode is constructed, which is fabricated using a two-step anodic oxidation approach. The PD exhibits excellent photodetection behavior, with high responsivity (218.77 mA W-1), detectivity (6.64 × 1013 Jones), external quantum efficiency (72.47%), and rapid rise/decay times (17/48 ms) under 375 nm light illumination with a low intensity of 0.15 mW cm-2 and a bias voltage of 0.6 V, which is fall in the state-of-the-art of the wide-bandgap semiconductor-based PDs reported thus far. Furthermore, the SiC PEC PD exhibits excellent photoresponse and long-term operational stability in pH-universal liquid environments. The improved photodetection performance of the SiC PEC PD is primarily attributed to the synergistic effect of the nanopore array structure, integrated self-supporting configuration, and single-crystal structure of the whole photoelectrode.

8.
J Colloid Interface Sci ; 661: 923-929, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38330664

RESUMEN

Iron phthalocyanine (FePc) is an attractive nonprecious metal candidate for electrocatalytic oxygen reduction reaction (ORR). However, its low catalytic performance under acidic and neutral conditions limits its practical application. Herein, the FePc-based covalent organic polymers (COPFePc) polymerized in situ on the functionalized multiwalled carbon nanotubes (R-MWCNT) containing different electron-withdrawing or electron-donating groups (COPFePc/R-MWCNT, R = COOH, OH or NH2) were synthesized for ORR. Among them, COPFePc/COOH-MWCNT exhibited the best ORR performance under pH-universal conditions (acidic, neutral, and alkaline). Density-functional theory (DFT) calculations demonstrate that the electron-withdrawing or electron-donating effect of the functional groups in COPFePc/R-MWCNT causes charge redistribution of the active center Fe. The COOH functional group with an electron-withdrawing ability shifts the d-band center of Fe away from the Fermi energy level and reduces the binding strength of oxygen-containing intermediates, accelerating the ORR kinetics and optimizing the catalytic activity.

9.
Small ; 20(14): e2307405, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37988711

RESUMEN

The nitridation of noble metals-based catalysts to further enhance their hydrogen evolution reaction (HER) kinetics in neutral and alkaline conditions would be an effective strategy for developing high-performance wide pH HER catalysts. Herein, a facile molten urea method is employed to construct the nitrided Rh nanoclusters (RhxN) supported on N-doped carbon (RhxN-NC). The uniformly distributed RhxN clusters exhibited optimized water bonding and splitting effects, therefore resulting in excellent pH-universal HER performance. The optimized RhxN-NC catalyst only requires 8, 12, and 109 mV overpotentials to reach the current density of 10 mA cm-2 in 0.5 M H2SO4, 1.0 M KOH, and 1.0 M PBS electrolytes, respectively. The spectroscopic characterizations and theoretical calculation further confirm the vital role of Rh-N moieties in RhxN clusters in improving the transfer of electrons and facilitating the generation of H2. This work not only provides a suitable nitridation method for noble metal species in mild conditions but also makes a breakthrough in synthesizing noble metal nitrides-based electrocatalysts to achieve an exceptional wide-pH HER performance and other catalysis.

10.
J Colloid Interface Sci ; 657: 559-566, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38071805

RESUMEN

The rational design of low-cost, efficient, and stable heterojunction catalysts for pH-universal hydrogen evolution is attracting increasing attention towards a sustainable hydrogen economy. Herein, a sequential spatial restriction-pyrolysis route is developed to confine Mott-Schottky-type Co-Co2P heterojunctions embedded in the one-dimensional (1D) carbon nanotube-modified three-dimensional (3D) N,P dual-doped carbon matrix (Co-Co2P@CNT//CM). The synergistic effect between the abundant Mott-Schottky heterointerfaces and the 1D/3D dual carbon confinement system enables fully exposed active sites and facilitated charge transfer dynamics, thus triggering favorable electronic structures of Co-Co2P@CNT//CM. As a result, Co-Co2P@CNT//CM heterojunctions exhibit excellent pH-universal hydrogen evolution reaction (HER) performance with overpotentials of 142, 205, and 262 mV at 10 mA cm-2 in 0.5 M H2SO4, 1.0 M KOH, and 1.0 M phosphate buffer saline (PBS), respectively. The theoretical results demonstrated that the Mott-Schottky effect can induce an oriented interfacial charge exchange between Co and Co2P. This can lower the reactive kinetic barrier and endow Co-Co2P@CNT//CM with ideal hydrogen adsorption free energy, which efficiently drives the production of H2 from electrolytic water.

11.
ACS Appl Mater Interfaces ; 16(1): 889-897, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38153800

RESUMEN

Achieving effective hydrogen evolution/oxidation reaction (HER/HOR) across a wide pH span is of critical importance in unlocking the full potential of hydrogen energy but remains intrinsically challenging. Here, we engineer the N-coordinated Ir-Mo dual atoms on a carbon matrix by ultrafast high-temperature sintering, creating an efficient bifunctional electrocatalyst for both HER and HOR in both acidic and alkaline electrolytes. The optimized catalyst, Ir-Mo DAC/NC, demonstrates exceptional performance, with a significantly reduced HER overpotential of 11.3 mV at 10 mA/cm2 and a HOR exchange current (i0,m) of 3972 mA/mgIr in acidic conditions, surpassing the performance of Pt/C and Ir/C catalysts. In alkaline conditions, Ir-Mo DAC/NC also outperforms Pt/C, as evidenced by its low HER overpotential of 23 mV at 10 mA/cm2 and a high i0,m of 1308 mA/mgIr. Furthermore, our catalyst exhibits remarkable stability in both acidic and alkaline environments. DFT calculations results reveal that the superior electrochemical performance of Ir-Mo DAC/NC arises from the electronic synergy between Ir and Mo pairs, which regulates the interaction between the intermediates and active sites. These findings present a promising strategy for the development of dual-atom catalysts (DACs), with potential applications in the polymer fuel cells and water electrolyzers.

12.
Small ; : e2308549, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38054764

RESUMEN

Boosting the hydrogen evolution reaction (HER) activity of α-MoB2 at large current densities and in pH-universal medium is significant for efficient hydrogen production. In this work, Co2 B/MoB2 heterostructured nanoclusters are prepared by molten-salt electrolysis (MSE) and then used as a HER catalyst. The composition, structure, and morphology of Co2 B/MoB2 can be modulated by altering the stoichiometries of raw materials and synthesis temperatures. Impressively, the obtained Co2 B/MoB2 at optimized conditions exhibits a low overpotential of 297 and 304 mV at 500 mA cm-2 in 0.5 m H2 SO4 and 1 m KOH, respectively. Moreover, the Co2 B/MoB2 catalyst possesses a long-term catalytic stability of over 190 h in both acidic and alkaline medium. The excellent HER performance is due to the modified electronic structure at the Co2 B/MoB2 heterointerface where electrons are accumulated at the Mo sites to strengthen the H adsorption. Density functional theory (DFT) calculations reveal that the formation of the Co2 B/MoB2 heterointerface decreases the H adsorption and H2 O dissociation free energies, contributing to the boosted HER intrinsic catalytic activity of Co2 B/MoB2 . Overall, this work provides an experimental and theoretical paradigm for the design of efficient pH-universal boride heterostructure electrocatalysts.

13.
J Colloid Interface Sci ; 652(Pt A): 989-996, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37639929

RESUMEN

The design and development of high-performance, low-cost catalysts with long-term durability are crucial for hydrogen generation from water electrolysis. Interfacial engineering is an appealing strategy to boost the catalytic performance of electrode materials toward hydrogen evolution reaction (HER). Herein, we report a simple phosphidation followed by sulfidation treatment to construct heterogeneous cobalt phosphide-cobalt sulfide nanowire arrays on carbon cloth (CoP/CoS2/CC). When evaluated as catalysts toward the HER, the resultant CoP/CoS2/CC exhibits efficient pH-universal hydrogen production due to the heterostructure, synergistic contribution of CoP and CoS2, and conductive substrate. To attain a current density of 10 mA cm-2, overpotentials of only 111.2, 58.1, and 182.9 mV for CoP/CoS2/CC are required under alkaline, acidic, and neutral conditions, respectively. In particular, the as-prepared CoP/CoS2/CC shows markedly improved HER electroactivity in 1.0 M KOH, even outperforming commercial Pt-C/CC at a current density of >50 mA cm-2. In addition, the self-assembled CoP/CoS2||NiFe layered double hydroxide electrolyzer demonstrates efficient catalytic performance and long-time stability, excelling the benchmark Pt-C||IrO2. These findings indicate an effective pathway for the fabrication of high-performance heterogeneous electrocatalysts for hydrogen production in the future.

14.
Small ; 19(49): e2303974, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37590380

RESUMEN

Exploring highly efficient hydrogen evolution reaction (HER) electrocatalysts for large-scale water electrolysis in the full potential of hydrogen (pH) range is highly desirable, but it remains a significant challenge. Herein, a simple pathway is proposed to synthesize a hybrid electrocatalyst by decorating small metallic platinum (Pt) nanosheets on a large nickel telluride nanosheet (termed as PtNs /NiTe-Ns). The as-prepared PtNs /NiTe-Ns catalyst only requires overpotentials of 72, 162, and 65 mV to reach a high current density of 200 mA cm-2 in alkaline, neutral and acidic conditions, respectively. Theoretical calculations reveal that the combination of metallic Pt and NiTe-Ns subtly modulates the electronic redistribution at their interface, improves the charge-transfer kinetics, and enhances the performance of Ni active sites. The synergy between the Pt site and activated Ni site near the interface in PtNs /NiTe-Ns promotes the sluggish water-dissociation kinetics and optimizes the subsequent oxyhydrogen/hydrogen intermediates (OH*/H*) adsorption, accelerating the HER process. Additionally, the superhydrophilicity and superaerophobicity of PtNs /NiTe-Ns facilitate the mass transfer process and ensure the rapid desorption of generated bubbles, significantly enhancing overall alkaline water/saline water/seawater electrolysis catalytic activity and stability.

15.
Adv Mater ; 35(41): e2303030, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37392140

RESUMEN

By providing dual active sites to synergistically accelerate H2 O dissociation and H+ reduction, ordered intermetallic alloys usually show extraordinary performance for pH-universal hydrogen evolution reaction (HER). Herein, activated N-doped mesoporous carbon spheres supported intermetallic Pt3 Fe alloys (Pt3 Fe/NMCS-A), as a highly-efficient electrocatalyst for pH-universal HER, are reported. The Pt3 Fe/NMCS-A exhibits low overpotentials (η10 ) of 13, 29, and 48 mV to deliver 10 mA cm-2 in 0.5 m H2 SO4 , 1.0 m KOH, and 1.0 m phosphate buffered solution (PBS), respectively, as well as robust stability to maintain the overall catalytic performances. Theoretical studies reveal that the strong Pt 5d-Fe 3d orbital electronic interactions negatively shift the d-band center (εd ) of Pt 5d orbital, resulting in reduced H* adsorption energy of Pt sites and enhanced acidic HER activity. With Pt and Fe acting as co-adsorption sites for H* and *OH intermediates, respectively, a low energy barrier is required for Pt3 Fe/NMCS-A to dissociate H2 O to afford H* intermediates, which greatly promotes the H* adsorption and H2 formation in alkaline and neutral conditions. The synthetic strategy is further extended to the synthesis of Pt3 Co and Pt3 Ni alloys with excellent HER activity in pH-universal electrolytes, demonstrating the great potential of these Pt-based alloys for practical applications.

16.
J Colloid Interface Sci ; 650(Pt B): 1871-1880, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37517187

RESUMEN

Current aqueous supercapacitors (SCs) possess the relative low energy density, and there is therefore widespread interest in cost-effective fabrication of capacitive materials with promoted specific capacitance and/or broadened voltage window. Here, a redox-active azure C-decorated N-doped graphene aerogel (AC - NGA) is fabricated using a simple hydrothermal self-assembly method through strong noncovalent π-π interaction. AC - NGA highlights an excellent charge storage performance (a high 591F g-1 gravimetric capacitance under a current density of 1.0 A g-1 and ultrahigh voltage window of 2.3 V) under pH-universal conditions. The capacitive contribution of charge storage is 91.7%, exceeding or comparable to those of the best pseudocapacitors known. Furthermore, a symmetric AC - NGA//AC - NGA device realizes high energy and power densities (15.2-60.2 Wh kg-1 at 650-23,000 W kg-1) and excellent cycling stability in acidic, neutral, and basic aqueous solutions. This work offers a cost-effective strategy to combine redox dye molecules with heteroatom-doped graphene aerogel for building green efficient pH-universal aqueous supercapacitors.

17.
Small ; 19(44): e2301721, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37386796

RESUMEN

Heterogenous catalysis is important for future clean and sustainable energy systems. However, an urgent need to promote the development of efficient and stable hydrogen evolution catalysts still exists. In this study, ruthenium nanoparticles (Ru NPs) are in situ grown on Fe5 Ni4 S8 support (Ru/FNS) by replacement growth strategy. An efficient Ru/FNS electrocatalyst with enhanced interfacial effect is then developed and successfully applied for pH-universal hydrogen evolution reaction (HER). The Fe vacancies formed by FNS during the electrochemical process are found to be conducive to the introduction and firm anchoring of Ru atoms. Compared to Pt atoms, Ru atoms get easily aggregated and then grow rapidly to form NPs. This induces more bonding between Ru NPs and FNS, preventing the fall-off of Ru NPs and maintaining the structural stability of FNS. Moreover, the interaction between FNS and Ru NPs can adjust the d-band center of Ru NPs, as well as balance the hydrolytic dissociation energy and hydrogen binding energy. Consequently, the as-prepared Ru/FNS electrocatalyst exhibits excellent HER activity and improved cycle stability under pH-universal conditions. The developed pentlandite-based electrocatalysts with low cost, high activity, and good stability are promising candidates for future applications in water electrolysis.

18.
Angew Chem Int Ed Engl ; 62(17): e202302220, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36859751

RESUMEN

The construction of high-activity and low-cost electrocatalysts is critical for efficient hydrogen production by water electrolysis. Herein, we developed an advanced electrocatalyst by anchoring well-dispersed Ir nanoparticles on nickel metal-organic framework (MOF) Ni-NDC (NDC: 2,6-naphthalenedicarboxylic) nanosheets. Benefiting from the strong synergy between Ir and MOF through interfacial Ni-O-Ir bonds, the synthesized Ir@Ni-NDC showed exceptional electrocatalytic performance for hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and overall water splitting in a wide pH range, superior to commercial benchmarks and most reported electrocatalysts. Theoretical calculations revealed that the charge redistribution of Ni-O-Ir bridge induced the optimization of H2 O, OH* and H* adsorption, thus leading to the accelerated electrochemical kinetics for HER and OER. This work provides a new clue to exploit bifunctional electrocatalysts for pH-universal overall water splitting.

19.
Adv Mater ; 35(6): e2208101, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36427353

RESUMEN

The development of high-performance catalysts with high activity, selectivity, and stability are essential for the practical applications of H2 O2 electrosynthesis technology, but it is still formidably challenging. It is reported that the low-coordinated structure of Pd sites in amorphous PdSe2 nanoparticles (a-PdSe2 NPs) can significantly boost the electrocatalytic synthesis of H2 O2 . Detailed investigations and theoretical calculations reveal that the disordered arrangement of Pd atoms in a-PdSe2 NPs can promote the activity, while the Pd sites with low-coordinated environment can optimize the adsorption toward oxygenated intermediate and suppress the cleavage of O-O bond, leading to a significant enhancement in both the H2 O2 selectivity and productivity. Impressively, a-PdSe2 NPs/C exhibits high H2 O2 selectivity over 90% in different pH electrolytes. H2 O2 productivities with ≈3245.7, 1725.5, and 2242.1 mmol gPd -1  h-1 in 0.1 m KOH, 0.1 m HClO4 , and 0.1 m Na2 SO4 can be achieved, respectively, in an H-cell electrolyzer, being a pH-universal catalyst for H2 O2 electrochemical synthesis. Furthermore, the produced H2 O2 can reach 1081.8 ppm in a three-phase flow cell reactor after 2 h enrichment in 0.1 m Na2 SO4 , showing the great potential of a-PdSe2 NPs/C for practical H2 O2 electrosynthesis.

20.
Small ; 19(4): e2204889, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36420939

RESUMEN

Exquisite design of RuO2 -based catalysts to simultaneously improve activity and stability under harsh conditions and reduce the Ru dosage is crucial for advancing energy conversion involving oxygen evolution reaction (OER). Herein, a distinctive cobalt-doped RuOx framework is constructed on Co3 O4 nanocones (Co3 O4 @CoRuOx ) as a promising strategy to realize above urgent desires. Extensive experimental characterization and theoretical analysis demonstrate that cobalt doped in RuOx lattice brings the oxygen vacancies and lattice contraction, which jointly redistribute the electron configuration of RuOx . The optimized d-band center balances the adsorption energies of oxygenated intermediates, lowing the thermodynamical barrier of the rate-determining step; and meanwhile, the over-oxidation and dissolution of Ru species are restrained because of the p-band down-shifting of the lattice oxygen. Co3 O4 @CoRuOx with 3.7 wt.% Ru delivers the extremely low OER overpotentials at 10 mA cm-2 in alkaline (167 mV), neutral (229 mV), and acidic electrolytes (161 mV), and super operating stability over dozens of hours. The unprecedented activity ranks first in all pH-universal OER catalysts reported so far. These findings provide a route to produce robust low-loading Ru catalysts and an engineering approach for regulating the central active metal through synergy of co-existing defects to improve the catalytic performance and stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA