Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 326: 138465, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36948258

RESUMEN

Municipal solid waste incineration fly ash (MSWI FA) stabilization/solidification using calcium carbonate (CaCO3) oligomer is an efficient, low-carbon disposal method. The insoluble Ca in FA was converted to free-Ca, utilizing for CaCO3 oligomer preparation, which was crystallized and polymerized by thermal induction to develop continuous cross-link or bulk structures for stabilization/solidification of potentially toxic elements (PTEs, e.g., lead (Pb) and zinc (Zn)). Experimental results showed that the weakly alkaline acid-leaching suspension provided an excellent condition for the generation of CaCO3 oligomers, with Pb and Zn immobilization reaching over 99.4%. With the acid strengthening of the suspension, H+ took the lead in protonating with TEA and limiting the capping action of TEA, which was harmful to the synthesis of CaCO3 oligomers. Ethanol with a low dielectric constant was considered an ideal solvent for oligomer production, and triethylamine (TEA) as a capping agent established hydrogen bonds (N⋯H) with protonated CaCO3. H2O molecules competed with the protonated CaCO3 molecules for TEA with ethanol concentration decreasing, resulting in erratic precipitation of CaCO3 molecules and significantly elevated leaching risk of Pb and Zn. The sequential extraction procedure, pH-dependent leaching, and geochemical analysis results revealed that the dissolution/precipitation of Ca, Pb, and Zn in treated FA was mostly controlled by the carbonate mineral phases. Moreover, the low boiling points of ethanol and TEA can be recovered for recycling. The gel-like, flexible combination of CaCO3 oligomers and FA particles formed by FA offers great resource utilization potential via a controlled crystallization polymerization process.


Asunto(s)
Metales Pesados , Eliminación de Residuos , Ceniza del Carbón , Metales Pesados/análisis , Calcio , Material Particulado/química , Cristalización , Solubilidad , Plomo/análisis , Polimerizacion , Zinc/análisis , Incineración/métodos , Residuos Sólidos/análisis , Carbono/química , Calcio de la Dieta , Eliminación de Residuos/métodos
2.
J Hazard Mater ; 435: 128971, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35472547

RESUMEN

Sustainable stabilization/solidification (S/S) incorporating biochar for hazardous wastes has attracted increasing attention. In this study, contaminated marine sediments were remediated and recycled as useful materials via cement-based S/S process incorporating iron-biochar composites derived from incinerated sewage sludge ash (ISSA) and peanut shell. Results showed that incorporation of 20% iron-biochar composites notably increased the Cr immobilization (52.8% vs 92.1-99.7%), while attained similar As (70%) and Cu (95%) immobilization efficiencies compared to the control group (CK) prepared with plain cement as the binder based on the Toxicity Characteristic Leaching Procedure. S/S products with the addition of ISSA derived iron-biochar composite had a mechanical strength of 5.0 MPa, which was significantly higher than its counterparts derived from pure iron oxide or pristine biochar (< 4.5 MPa). Microstructural and spectroscopic characterizations and chemical leaching experiments demonstrated that reduction of Cr(VI) to Cr(III) followed by formation of Cr-Fe precipitates by zero valent iron in iron-biochar composites contributed to the enhanced immobilization efficacy of Cr(VI) compared to CK. Overall, these results demonstrated the potential of applying ISSA and peanut shell derived iron-biochar composites as additives in the cement-based S/S treatment for contaminated sediments.


Asunto(s)
Carbón Orgánico , Hierro , Carbón Orgánico/química , Sedimentos Geológicos , Reciclaje , Aguas del Alcantarillado
3.
J Hazard Mater ; 409: 124429, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33213982

RESUMEN

Travertines and their springs are rarely investigated as a source of toxicity. Remarkably high contents of As (up to 10 g/kg) have been found in travertine deposits and associated spring waters, nearby Ghorveh city (western Iran). Two types of travertines were distinguished: (i) Fissure ridge travertines, in areas with a carbonate-dominated basement, are characterized by a relatively low content and leaching of As. Their spring waters contain > 150 µg/L of As; (ii) Mound travertines, rich in non-carbonate impurities, occur in areas with volcanic substrates and contain high As concentrations (on average ~1,500 mg/kg) with high leachability. Their spring waters have lower As concentrations than equivalent fissure ridge waters. Principal Component Analyses of the elemental and mineralogical composition show the unstable association of As over a wide range of pH values to non-carbonate related elements, in particular iron, related to clay minerals. The high potential release of As may result in adverse ecotoxicological effects in surrounding agricultural soils and crops. An ecological risk assessment confirms the enrichment and very high potential ecological risk of As around mound carbonates. The human health risk assessment based on calculation via exposure factors suggests adverse non-carcinogenic and high carcinogenic risk with regard to As, both for adults and children.


Asunto(s)
Arsénico , Adulto , Agricultura , Arsénico/análisis , Arsénico/toxicidad , Niño , Ciudades , Monitoreo del Ambiente , Humanos , Irán , Minerales/análisis , Medición de Riesgo
4.
Chemosphere ; 223: 425-437, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30784749

RESUMEN

The pH-dependent availability and leaching of major and trace elements was investigated for a wide range of biomass ash from different fuels and conversion technologies. A technical and environmental assessment of selected biomass ash for application in soil or cement mortars was performed, using both the total content and leaching of elements. A large variation in biomass ash composition, yet consistent pH dependent leaching patterns were observed for most elements and conversion technologies. Chromium showed a distinct behaviour which was hypothesized to reflect redox conditions during conversion of the biomass. The leaching based approach was found to provide a more realistic assessment of the availability of desired (i.e. nutrients) and undesired elements (i.e. contaminants) in soil systems. When applied to a reference soil at a rate of 2% by weight, the selected biomass ash increased the concentration of particularly Cr, Mo and Zn in soil solution to a level of concern. For cement applications, the release of Ba, Cr and Mo can become of concern during the second life stage, but the release was not attributed to the included biomass ash. Both soil and cement matrixes were found to control the release of elements such as Cu, V and Ni (soil) and As, Cr and Mo (cement) when compared to the released from pure biomass ash, underlining the importance of evaluating the availability and leaching of desired and undesired elements in the application scenario. Given current regulatory criteria, beneficial utilization of biomass ash in cement may be more feasible than in soil, but regulatory criteria based on leaching rather than total content of elements may widen the application potential of biomass ash.


Asunto(s)
Biomasa , Ceniza del Carbón/farmacología , Materiales de Construcción , Suelo/química , Cromo/análisis , Contaminantes del Suelo/análisis , Oligoelementos/análisis
5.
J Hazard Mater ; 346: 273-284, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29287254

RESUMEN

A phosphorus-bearing product S-PAL obtained from nutrient-rich wastewater was reused as ameliorant for Cu, Pb and Cd immobilization in contaminated soil with three different rates (1%, 5% and 10% w/w). The 0.01 mol/L CaCl2 -extractability of metals significantly reduced with increasing rate of PAL and S-PAL in the first 7-day immobilization and insignificantly changed after 14-day immobilization. Compared with PAL, the lower metal extractability was observed after S-PAL addition. The BCR sequential extraction results showed that both of amendments were beneficial to transform acid soluble fraction to residual fraction. The XRD patterns of soil samples after immobilization evidenced that the formation of metal-bearing phosphate precipitates and the combination between functional groups such as Si-OH and metals played a key role for metal immobilization by S-PAL and PAL. Dominant phyla across all samples were Fusobacteria, Proteobacteria and Actinobacteria, and the relative abundance of Fusobacteria decreased under S-PAL treatment. The pH-dependent leaching test indicated that the metal release at a defined pH was not affected by the presence of PAL. Compared with S-PAL, the metals amended by PAL in soil were easier to release at acidic pH since the combination between functional groups and metals instead the formation of new metal-bearing precipitate.

6.
J Environ Manage ; 187: 178-186, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27889660

RESUMEN

The leaching behaviors of primary copper (Cu) slags originating from Ausmelt, reverbatory, and converter furnaces operating under a single technological process were compared to a residual slag tailing obtained by slag re-processing via flotation and metal recovery. The EN 12457-2 leaching test, used for assessment of the hazardous properties, was followed by the CEN/TS 14997 pH-static leaching test (pH range 3-12). Both leaching experiments were coupled with a mineralogical investigation of the primary and secondary phases as well as geochemical modeling. Metals (Cd, Cu, Pb, Zn) exhibit the highest leaching at low pH. Under acidic conditions (pH 3-6), Ausmelt slag and slag tailing exhibited higher metal leaching compared to other slag types. Very low leaching of metals (far below EU limits for non-hazardous waste) was observed at natural pH (7.9-9.0) for all the studied slag samples. In contrast, relatively high leaching of As was observed over the entire pH range, especially for Ausmelt slag (exceeding the EU limit for hazardous waste by 1.7×). However, geochemical modeling and scanning electron microscopy indicated that formation of stable Ca-Cu-Pb arsenates and the binding of As to newly formed Fe (oxyhydr)oxides play an important role in efficient As immobilization at the slag-water interface. In contrast, no controls were predicted for Sb, whose leaching was almost pH-independent. Nevertheless Sb leached concentrations at natural pH were below EU limit for hazardous waste. Re-processing of primary Cu slags for metal recovery, and subsequent co-disposal of the resulting slag tailing with dolomite-rich mine tailing and local laterite is suitable for stabilizing the remaining contaminants (except Sb) and limiting their leaching into the environment.


Asunto(s)
Cobre , Ambiente , Contaminantes Ambientales/análisis , Metalurgia/métodos , Residuos/análisis , Arseniatos , Unión Europea , Residuos Peligrosos/legislación & jurisprudencia , Metales , Minería , Namibia
7.
J Environ Manage ; 177: 26-35, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27074201

RESUMEN

Zinc plant purification residue (ZPR), a typical Zn-hydrometallurgical waste, was collected from the Três Marias Zn plant (MG, Brazil). ZPR was characterized for its metal content and fractionation, mineralogy, toxicity and leachability. Toxicity characteristics leaching procedure (TCLP) and European Community Bureau of Reference (BCR) sequential extraction results revealed that this ZPR displays high percentages of metals (Cd, Cu, Zn and Pb) in the highly mobilizable fractions, increasing its hazardous potential. Bulk chemical analysis, pH dependent leaching and acid (H2SO4) leaching studies confirm that the ZPR is polymetallic, rich in Cd, Cu and Zn. The sulfuric acid concentration (1 M), agitation speed (450 rpm), temperature (40 °C) and pulp density (20 g L(-1)) were optimized to leach the maximum amount of heavy metals (Cd, Cu and Zn). Under optimum conditions, more than 50%, 70% and 60% of the total Cd, Cu and Zn present in the ZPR can be leached, respectively. The metals in the acid leachates were investigated for metal sulfide precipitation with an emphasis on selective Cu recovery. Metal sulfide precipitation process parameters such as initial pH and Cu to sulfide ratio were optimized as pH 1.5 and 1:0.5 (Cu:sulfide) mass ratio, respectively. Under optimum conditions, more than 95% of Cu can be selectively recovered from the polymetallic ZPR leachates. The Cu precipitates characterization studies reveal that they are approximately 0.1 µm in diameter and mainly consist of Cu and S. XRD analysis showed covellite (CuS), chalcanthite (CuSO4·5H2O) and natrochalcite (NaCu2(SO4)2(OH)·H2O) as the mineral phases. ZPRs can thus be considered as an alternative resource for copper production.


Asunto(s)
Cobre/análisis , Contaminación Ambiental/análisis , Residuos Industriales/análisis , Metalurgia , Metales Pesados/análisis , Zinc/análisis , Brasil , Fraccionamiento Químico , Cobre/química , Concentración de Iones de Hidrógeno , Cinética , Metales Pesados/química , Zinc/química
8.
J Hazard Mater ; 310: 1-10, 2016 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-26897569

RESUMEN

The leaching and accumulation of heavy metals are major concerns following the land application of sewage sludge compost (SSC). We comparatively characterized SSC, the reference soil, and the SSC amended soil to investigate their similarities and differences regarding heavy metal leaching behavior and then to evaluate the effect of SSC land application on the leaching behavior of soil. Results showed that organic matter, including both of particulate organic matter (POM) and dissolved organic matter (DOM), were critical factors influencing heavy metal leaching from both of SSC and the soil. When SSC was applied to soil at the application rate of 48t/ha, the increase of DOM content slightly enhanced heavy metal leaching from the amended soil over the applicable pH domain (6

9.
Waste Manag ; 42: 93-100, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25934218

RESUMEN

Leachate collection system (LCS) clogging caused by calcium precipitation would be disadvantageous to landfill stability and operation. Meanwhile, calcium-based compounds are the main constituents in both municipal solid waste incineration bottom ash (MSWIBA) and stabilized air pollution control residues (SAPCR), which would increase the risk of LCS clogging once these calcium-rich residues were disposed in landfills. The leaching behaviors of calcium from the four compounds and municipal solid waste incineration (MSWI) residues were studied, and the influencing factors on leaching were discussed. The results showed that pH was the crucial factor in the calcium leaching process. CaCO3 and CaSiO3 began leaching when the leachate pH decreased to less than 7 and 10, respectively, while Ca3(PO4)2 leached at pH<12. CaSO4 could hardly dissolve in the experimental conditions. Moreover, the sequence of the leaching rate for the different calcium-based compounds is as follows: CaSiO3>Ca3(PO4)2>CaCO3. The calcium leaching from the MSWIBA and SAPCR separately started from pH<7 and pH<12, resulting from CaCO3 and Ca3(PO4)2 leaching respectively, which was proven by the X-ray diffraction results. Based on the leaching characteristics of the different calcium compounds and the mineral phase of calcium in the incineration residues, simulated computation of their clogging potential was conducted, providing the theoretical basis for the risk assessment pertaining to LCS clogging in landfills.


Asunto(s)
Compuestos de Calcio/análisis , Ceniza del Carbón/análisis , Contaminantes del Suelo/análisis , Residuos Sólidos/análisis , Contaminantes Químicos del Agua/análisis , Incineración , Eliminación de Residuos , Difracción de Rayos X
10.
Waste Manag ; 38: 174-84, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25555664

RESUMEN

Leaching behaviors of Arsenic (As), Barium (Ba), Calcium (Ca), Cadmium (Cd), Magnesium (Mg), Selenium (Se), and Strontium (Sr) from soil alone, coal fly ash alone, and soil-coal fly ash mixtures, were studied at a pH range of 2-14 via pH-dependent leaching tests. Seven different types of soils and coal fly ashes were tested. Results of this study indicated that Ca, Cd, Mg, and Sr showed cationic leaching pattern while As and Se generally follows an oxyanionic leaching pattern. On the other hand, leaching of Ba presented amphoteric-like leaching pattern but less pH-dependent. In spite of different types and composition of soil and coal fly ash investigated, the study reveals the similarity in leaching behavior as a function of pH for a given element from soil, coal fly ash, and soil-coal fly ash mixtures. The similarity is most likely due to similar controlling mechanisms (e.g., solubility, sorption, and solid-solution formation) and similar controlling factors (e.g., leachate pH and redox conditions). This offers the opportunity to transfer knowledge of coal fly ash that has been extensively characterized and studied to soil stabilized with coal fly ash. It is speculated that unburned carbon in off-specification coal fly ashes may provide sorption sites for Cd resulting in a reduction in concentration of these elements in leachate from soil-coal fly ash mixture. Class C fly ash provides sufficient CaO to initiate the pozzolanic reaction yielding hydrated cement products that oxyanions, including As and Se, can be incorporated into.


Asunto(s)
Ceniza del Carbón/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Suelo/química , Arsénico/análisis , Cadmio/análisis , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Maryland , Metales Alcalinotérreos/análisis , Minnesota , Solubilidad , Wisconsin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA