Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Intervalo de año de publicación
1.
Autophagy ; 20(2): 365-379, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37712850

RESUMEN

Cerebral ischemia induces massive mitochondrial damage, leading to neuronal death. The elimination of damaged mitochondria via mitophagy is critical for neuroprotection. Here we show that the level of PA2G4/EBP1 (proliferation-associated 2G4) was notably increased early during transient middle cerebral artery occlusion and prevented neuronal death by eliciting cerebral ischemia-reperfusion (IR)-induced mitophagy. Neuron-specific knockout of Pa2g4 increased infarct volume and aggravated neuron loss with impaired mitophagy and was rescued by introduction of adeno-associated virus serotype 2 expressing PA2G4/EBP1. We determined that PA2G4/EBP1 is ubiquitinated on lysine 376 by PRKN/PARKIN on the damaged mitochondria and interacts with receptor protein SQSTM1/p62 for mitophagy induction. Thus, our study suggests that PA2G4/EBP1 ubiquitination following cerebral IR-injury promotes mitophagy induction, which may be implicated in neuroprotection.Abbreviations: AAV: adeno-associated virus; ACTB: actin beta; BNIP3L/NIX: BCL2 interacting protein 3 like; CA1: Cornu Ammonis 1; CASP3: caspase 3; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DMSO: dimethyl sulfoxide; PA2G4/EBP1: proliferation-associated 2G4; FUNDC1: FUN14 domain containing 1; IB: immunoblotting; ICC: immunocytochemistry; IHC: immunohistochemistry; IP: immunoprecipitation; MCAO: middle cerebral artery occlusion; MEF: mouse embryonic fibroblast; OGD: oxygen-glucose deprivation; PRKN/PARKIN: parkin RBR E3 ubiquitin protein ligase; PINK1: PTEN induced kinase 1; RBFOX3/NeuN: RNA binding fox-1 homolog 3; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20: translocase of outer mitochondrial membrane 20; TUBB: tubulin beta class I; WT: wild-type.


Asunto(s)
Isquemia Encefálica , Mitofagia , Animales , Ratones , Mitofagia/genética , Proteína Sequestosoma-1/metabolismo , Infarto de la Arteria Cerebral Media , Autofagia , Proteínas Quinasas/metabolismo , Fibroblastos/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-37830236

RESUMEN

Hearing in infants is essential for brain development, acquisition of verbal language skills, and development of social interactions. Therefore, it is important to diagnose hearing loss soon after birth so that interventions can be provided as early as possible. Most newborns in the United States are screened for hearing deficits and commercially available next-generation sequencing hearing loss panels often can identify the causative gene, which may also identify congenital defects in other organs. One of the most prevalent autosomal dominant congenital hearing loss syndromes is branchio-oto-renal syndrome (BOR), which also presents with defects in craniofacial structures and the kidney. Currently, mutations in three genes, SIX1, SIX5, and EYA1, are known to be causative in about half of the BOR patients that have been tested. To uncover new candidate genes that could be added to congenital hearing loss genetic screens, we have combined the power of Drosophila mutants and protein biochemical assays with the embryological advantages of Xenopus, a key aquatic animal model with a high level of genomic similarity to human, to identify potential Six1 transcriptional targets and interacting proteins that play a role during otic development. We review our transcriptomic, yeast 2-hybrid, and proteomic approaches that have revealed a large number of new candidates. We also discuss how we have begun to identify how Six1 and co-factors interact to direct developmental events necessary for normal otic development.

3.
J Dent Sci ; 18(4): 1588-1597, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37799877

RESUMEN

Background/purpose: Proliferation-associated protein 2G4 (PA2G4) has alternative transcriptional and translational initiation. One dominant transcript ENST00000303305 could be translated into two protein isoforms (PA2G4-P42 and PA2G4-P48). In this study, we aimed to explore the effects of PA2G4-P42 and PA2G4-P48 on the proliferation of head and neck squamous cell carcinoma (HNSCC) and the mechanisms regulating PA2G4-P48 stability. Materials and methods: HNSCC cell lines HSC2 and SCC25 with relatively low PA2G4 expression were used for in-vitro cell studies. PA2G4-P42 and PA2G4-P48 overexpression lentiviruses were generated. In vitro cell proliferation was assessed by CCK-8 and colony formation. In vivo tumor cell proliferation was assessed by HSC2 cell-derived xenograft tumors. Liquid chromatography-mass spectrometry (LC-MS)/MS and co-immunoprecipitation (co-IP) assays were applied to check PA2G4-P48 interacting partners. Cycloheximide (CHX) chase and ubiquitin-based co-IP assays were also performed. Results: PA2G4-P48 was the dominant isoform, with substantially higher expression than PA2G4-P42 in HNSCC. PA2G4-P48 overexpression enhanced HNSCC cell proliferation, but PA2G4-P42 overexpression slowed the proliferation. MCTS1 interacted with PA2G4-P48, but not PA2G4-P42. PA2G4 protein but not its mRNA expression was decreased in cells with MCTS1 knockdown. MG132 treatment abrogated this alteration. MCTS1 overexpression significantly elevated the half-life of PA2G4-P48, while its knockdown drastically reduced the half-life compared with the control cells. In addition, MCTS1 overexpression significantly decreased the polyubiquitination of exogenous flag-tagged PA2G4-P48. MCTS1 overexpression-induced cell proliferation was hampered by knocking down of PA2G4-P48. Conclusion: PA2G4-P42 and PA2G4-P48 exert growth-suppressive and growth-promoting effects in HNSCC, respectively. MCTS1 can interact with PA2G4-P48 and prolong its half-life by reducing its poly-ubiquitination.

4.
Pathol Res Pract ; 248: 154609, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37421841

RESUMEN

BACKGROUND: The oncogenic role of circPUM1 has been revealed in multiple cancers. Nevertheless, the specific role and molecular mechanism of circPUM1 in neuroblastoma (NB) have never been reported. METHODS: The expression of genes was detected using RT-qPCR and Western Blot assay. The proliferation, migration, and invasion of NB cells were evaluated by CCK-8 and Transwell assays. Besides, mouse model was established to evaluate the effect of circPUM1 on the progression of NB. The interaction among genes was verified through RIP, MeRIP, or Luciferase reporter assay. RESULTS: Through our investigation, it was discovered that circPUM1 expression was abnormally elevated in NB tissues and the abundance of circPUM1 was correlated with unfavorable clinical outcomes in NB patients. Besides, the viability and mobility of NB cells as well as NB tumor growth were suppressed by silencing circPUM1. Moreover, bioinformatics prediction and experimental verification demonstrated that circPUM1 was a sponge for miR-423-5p which further targeted proliferation-associated protein 2G4 (PA2G4). The oncogenic effect of circPUM1 on NB was exerted through suppressing miR-423-5p to elevate PA2G4 expression. Finally, we investigated the transcriptional factor causing the upregulation of circPUM1 in NB. The result was that ALKB homolog 5 (ALKBH5), an m6A demethylase, suppressed the m6A modification of circPUM1 and caused the elevation of circPUM1 expression in NB. CONCLUSION: ALKBH5 induced the upregulation of circPUM1 to accelerate the development of NB through regulating miR-423-5p/PA2G4 axis.


Asunto(s)
MicroARNs , Neuroblastoma , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Regulación hacia Arriba , Proliferación Celular/genética , Neuroblastoma/metabolismo , Enzimas AlkB/genética , Enzimas AlkB/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Línea Celular Tumoral
5.
Cancers (Basel) ; 15(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36980710

RESUMEN

MYCN is a major oncogenic driver for neuroblastoma tumorigenesis, yet there are no direct MYCN inhibitors. We have previously identified PA2G4 as a direct protein-binding partner of MYCN and drive neuroblastoma tumorigenesis. A small molecule known to bind PA2G4, WS6, significantly decreased tumorigenicity in TH-MYCN neuroblastoma mice, along with the inhibition of PA2G4 and MYCN interactions. Here, we identified a number of novel WS6 analogues, with 80% structural similarity, and used surface plasmon resonance assays to determine their binding affinity. Analogues #5333 and #5338 showed direct binding towards human recombinant PA2G4. Importantly, #5333 and #5338 demonstrated a 70-fold lower toxicity for normal human myofibroblasts compared to WS6. Structure-activity relationship analysis showed that a 2,3 dimethylphenol was the most suitable substituent at the R1 position. Replacing the trifluoromethyl group on the phenyl ring at the R2 position, with a bromine or hydrogen atom, increased the difference between efficacy against neuroblastoma cells and normal myofibroblast toxicity. The WS6 analogues inhibited neuroblastoma cell phenotype in vitro, in part through effects on apoptosis, while their anti-cancer effects required both PA2G4 and MYCN expression. Collectively, chemical inhibition of PA2G4-MYCN binding by WS6 analogues represents a first-in-class drug discovery which may have implications for other MYCN-driven cancers.

6.
Mol Oncol ; 17(3): 518-533, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36606322

RESUMEN

An increasing number of studies have found that long non-coding RNA (lncRNA) play important roles in driving the progression of nasopharyngeal carcinoma (NPC). Our microarray screening revealed that expression of the lncRNA long intergenic non-protein coding RNA 173 (LINC00173) was upregulated in NPC. However, its role and mechanism in NPC have not yet been elucidated. In this study, we demonstrate that high LINC00173 expression indicated a poor prognosis in NPC patients. Knockdown of LINC00173 significantly inhibited NPC cell proliferation, migration and invasion in vitro. Mechanistically, LINC00173 interacted and colocalized with Ras-related protein Rab-1B (RAB1B) in the cytoplasm, but the modulation of LINC00173 expression did not affect the expression of RAB1B at either the mRNA or protein levels. Instead, relying on the stimulation of RAB1B, LINC00173 could facilitate the extracellular secretion of proliferation-associated 2G4 (PA2G4) and stromal cell-derived factor 4 (SDF4; also known as 45-kDa calcium-binding protein) proteins, and knockdown of these proteins could reverse the NPC aggressive phenotype induced by LINC00173 overexpression. Moreover, in vivo LINC00173-knockdown models exhibited a marked slowdown in tumor growth and a significant reduction in lymph node and lung metastases. In summary, LINC00173 serves as a crucial driver for NPC progression, and the LINC00173-RAB1B-PA2G4/SDF4 axis might provide a potential therapeutic target for NPC patients.


Asunto(s)
Neoplasias Nasofaríngeas , ARN Largo no Codificante , Proteínas de Unión al ARN , Proteínas de Unión al GTP rab1 , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al Calcio/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glicoproteínas/genética , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Proteínas de Unión al GTP rab1/genética , Proteínas de Unión al GTP rab1/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo
7.
Mol Ther Oncolytics ; 27: 157-166, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36381658

RESUMEN

Innovative cell-based therapies are important new weapons in the fight against difficult-to-treat cancers. One promising strategy involves cell therapies equipped with multiple receptors to integrate signals from more than one antigen. We developed a specific embodiment of this approach called Tmod, a two-receptor system that combines activating and inhibitory inputs to distinguish between tumor and normal cells. The selectivity of Tmod is enforced by the inhibitory receptor (blocker) that recognizes an antigen, such as an HLA allele, whose expression is absent from tumors because of loss of heterozygosity. Although unwanted cross-reactivity of the blocker likely reduces efficacy rather than safety, it is important to verify the blocker's specificity. We have tested an A∗02-directed blocker derived from the PA2.1 mouse antibody as a safety mechanism paired with a mesothelin-specific activating CAR in our Tmod construct. We solved the crystal structure of humanized PA2.1 Fab in complex with HLA-A∗02 to determine its binding epitope, which was used to bioinformatically select specific class I HLA alleles to test the blocker's functional specificity in vitro. We found that this A∗02-directed blocker is highly specific for its cognate antigen, with only one cross-reactive allele (A∗69) capable of triggering comparable function.

8.
Microvasc Res ; 143: 104378, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35594935

RESUMEN

INTRODUCTION: The Erb-b2 receptor tyrosine kinase 3 (ERBB3) is involved in autoimmune processes related to type 1 diabetes mellitus (T1DM) pathogenesis. Accordingly, some studies have suggested that single nucleotide polymorphisms (SNPs) in the ERBB3 gene confer risk for T1DM. Proliferation-associated protein 2G4 (PA2G4) is another candidate gene for this disease because it regulates cell proliferation and adaptive immunity. Moreover, PA2G4 regulates ERBB3. To date, no study has evaluated the association of PA2G4 SNPs and T1DM. AIM: To evaluate the association of ERBB3 rs705708 (G/A) and PA2G4 rs773120 (C/T) SNPs with T1DM and its clinical and laboratory characteristics. METHODS: This case-control study included 976 white subjects from Southern Brazil, categorized into 501 cases with T1DM and 475 non-diabetic controls. The ERBB3 and PA2G4 SNPs were genotyped by allelic discrimination-real-time PCR. RESULTS: ERBB3 rs705708 and PA2G4 rs773120 SNPs were not associated with T1DM considering different inheritance models and also when controlling for covariables. However, T1DM patients carrying the ERBB3 rs705708 A allele developed T1DM at an earlier age vs. G/G patients. Interestingly, in the T1DM group, the rs705708 A allele was associated with lower prevalence of diabetic retinopathy and arterial hypertension as well as with improved renal function (higher estimated glomerular filtration rate and lower urinary albumin excretion levels) compared to G/G patients. CONCLUSIONS: Although no association was observed between the ERBB3 rs705708 and PA2G4 rs773120 SNPs and T1DM, the rs705708 A allele was associated, for the first time in literature, with lower prevalence of diabetic retinopathy and arterial hypertension. Additionally, this SNP was associated with improved renal function.


Asunto(s)
Diabetes Mellitus Tipo 1 , Retinopatía Diabética , Hipertensión , Proteínas Adaptadoras Transductoras de Señales/genética , Alelos , Estudios de Casos y Controles , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/epidemiología , Retinopatía Diabética/diagnóstico , Retinopatía Diabética/epidemiología , Retinopatía Diabética/genética , Predisposición Genética a la Enfermedad , Humanos , Hipertensión/diagnóstico , Hipertensión/epidemiología , Hipertensión/genética , Riñón/fisiología , Polimorfismo de Nucleótido Simple , Prevalencia , Proteínas de Unión al ARN/genética , Receptor ErbB-3/genética
9.
Cell Biosci ; 12(1): 55, 2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35526051

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide with high mortality. Advanced stage upon diagnosis and cancer metastasis are the main reasons for the dismal prognosis of HCC in large part. The role of proliferation associated protein 2G4 (PA2G4) in tumorigenesis and cancer progression has been widely investigated in various cancers. However, whether and how PA2G4 participates in HCC metastasis is still underexplored. RESULTS: We found that the mRNA and protein levels of PA2G4 were higher in HCC samples than in normal liver tissues, and high expression of PA2G4 in HCC was correlated with a poor prognosis, by an integrative analysis of immunohistochemistry (IHC), western blot and bioinformatic approach. Moreover, the expression of PA2G4 was elevated in HCC patients with metastases than those metastasis-free. Cell migration, invasion, phalloidin staining and western blot analyses demonstrated that PA2G4 promoted epithelial to mesenchymal transition (EMT) of HCC cells in vitro. And a lung metastasis animal model exhibited that PA2G4 enhanced metastatic ability of HCC cells in vivo. RNA-sequencing combined with dual luciferase reporter assay and evaluation of mRNA half-time indicated that PA2G4 increased FYN expression by stabilizing its mRNA transcript. Recovering the impaired FYN level induced by PA2G4 knockdown rescued the impeded cell mobilities. Furthermore, endogenous immunoprecipitation (IP) and in-situ immunofluorescence (IF) showed that YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) was the endogenous binding patterner of PA2G4. In addition, RNA binding protein immunoprecipitation (RIP) and anti- N6-methyladenosine immunoprecipitation (MeRIP) assays demonstrated that FYN mRNA was N6-methyladenosine (m6A) modified and bound with PA2G4, as well as YTHDF2. Moreover, the m6A catalytic ability of YTHDF2 was found indispensable for the regulation of FYN by PA2G4. At last, the correlation of expression levels between PA2G4 and FYN in HCC tissues was verified by IHC and western blot analysis. CONCLUSIONS: These results indicate that PA2G4 plays a pro-metastatic role by increasing FYN expression through binding with YTHDF2 in HCC. PA2G4 may become a reliable prognostic marker or therapeutic target for HCC patients.

10.
Pharmacol Res ; 168: 105592, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33813027

RESUMEN

Abnormal glycolytic metabolism contributes to angiogenic sprouting involved in atherogenesis. We investigated the potential anti-angiogenic properties of specific 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) inhibitors in endothelial cells (ECs). ECs were treated with PFKFB3 inhibitors (named PA-1 and PA-2) and their effects on metabolic and functional characteristics of ECs were investigated. The anti-glycolytic compound 3-(pyridinyl)- 1-(4-pyridinyl)- 2-propen-1-one (3PO) was used as reference compound. PFKFB3 expression and activity (IC50 about 3-21 nM) was inhibited upon treatment with both compounds. Glucose uptake and lactate export were measured using commercial assays and showed a partial reduction up to 40%. PFKFB3 inhibition increased intracellular lactate accumulation, and reduced expression of monocarboxylate transporters-1 (MCT1) and MCT4. Furthermore, endothelial cell migration and proliferation assays demonstrated significant reduction upon treatment with both compounds. Matrix- metalloproteinase (MMP) activity, measured by gelatin zymography, and expression was significantly reduced (up to 25%). In addition, PA compounds downregulated the expression of VCAM-1, VE-cadherin, VEGFa, VEGFR2, TGF-ß, and IL-1ß, in inflamed ECs. Finally, PA-1 and PA-2 treatment impaired the formation of angiogenic sprouts measured by both morphogenesis and spheroid-based angiogenesis assays. Our data demonstrate that the anti-glycolytic PA compounds may affect several steps involved in angiogenesis. Targeting the key glycolytic enzyme PFKFB3 might represent an attractive therapeutic strategy to improve the efficacy of cancer treatments, or to be applied in other pathologies where angiogenesis is a detrimental factor.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Fosfofructoquinasa-2/antagonistas & inhibidores , Células Cultivadas , Humanos , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/fisiología , Proteínas Musculares/fisiología , NAD/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Simportadores/fisiología
11.
Pharmacol Res Perspect ; 9(1): e00706, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33508174

RESUMEN

In the context of pharmacology teaching, hands-on activities constitute an essential complement to theoretical lectures. Frequently, these activities consist in exposing fresh animal tissues or even living animals to selected drugs and qualitatively or quantitatively evaluating functional responses. However, technological advancements in pharmacological research and the growing concerns for animal experimentation support the need for innovative and flexible in vitro assays adapted for teaching purposes. We herein report the implementation of a luciferase complementation assay (LCA) enabling to dynamically monitor ß-arrestin2 recruitment at the ß2 adrenergic receptor in the framework of pharmacological training at the faculty of Pharmacy and Biomedical Sciences. The assay allowed students to quantitatively characterize the competitive antagonism of propranolol, and to calculate pEC50 , pKB , and pA2 values after a guided data analysis session. Moreover, the newly implemented workshop delivered highly reproducible results and were generally appreciated by students. As such, we report that the luciferase complementation-based assay proved to be a straightforward, robust, and cost-effective alternative to experiments performed on animal tissues, constituting a useful and flexible tool to enhance and update current hands-on training in the context of pharmacological teaching.


Asunto(s)
Bioensayo , Luciferasas de Luciérnaga/metabolismo , Farmacología/educación , Receptores Adrenérgicos beta 2/metabolismo , Arrestina beta 2/metabolismo , Agonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/farmacología , Educación , Células HEK293 , Humanos , Isoproterenol/farmacología , Luciferasas de Luciérnaga/genética , Propranolol/farmacología , Receptores Adrenérgicos beta 2/genética , Encuestas y Cuestionarios , Arrestina beta 2/genética
12.
Life Sci ; 265: 118793, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33220287

RESUMEN

Dysregulation of pseudogenes is involved in the progression of various types of cancer, including glioblastoma (GBM). Proliferation associated-2G4 (PA2G4) pseudogene 4 (PA2G4P4) has been shown to play an oncogenic role in bladder cancer development. Our study aimed to explore the role and mechanism of PA2G4P4 in GBM progression. PA2G4P4 and PA2G4 expression in GBM tissues was analyzed using the GEPIA database. Cell viability, apoptosis, and activities of caspase-3 and caspase-9 in GBM cells were explored by CCK-8, flow cytometry analysis, and colorimetric activity assay kits, respectively. GEPIA database showed that PA2G4P4 and PA2G4 were both upregulated in GBM tissues. PA2G4P4 expression was also boosted in GBM cells. Knockdown of PA2G4P4 or PA2G4 inhibited cell viability, induced apoptosis, and increased caspase-3 and caspase-9 activities in GBM cells. Data from UALCAN database showed that among top 15 genes correlated with PA2G4P4, PA2G4 had the highest correlation coefficient. Additionally, knockdown of PA2G4P4 inhibited PA2G4 expression and nuclear translocation in GBM cells. Overexpression of PA2G4 abolished the functions of PA2G4P4 knockdown on viability and apoptosis in GBM cells. Summarily, pseudogene PA2G4P4 promotes oncogene PA2G4 expression and nuclear translocation to affect cell viability and apoptosis in GBM cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Apoptosis/fisiología , Supervivencia Celular/fisiología , Glioblastoma/metabolismo , Oncogenes/fisiología , Seudogenes/fisiología , Proteínas de Unión al ARN/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , Humanos , Proteínas de Unión al ARN/genética , Translocación Genética/fisiología
13.
J Biol Chem ; 295(47): 16100-16112, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32952126

RESUMEN

The role of proliferation-associated protein 2G4 (PA2G4), alternatively known as ErbB3-binding protein 1 (EBP1), in cancer has become apparent over the past 20 years. PA2G4 expression levels are correlated with prognosis in a range of human cancers, including neuroblastoma, cervical, brain, breast, prostate, pancreatic, hepatocellular, and other tumors. There are two PA2G4 isoforms, PA2G4-p42 and PA2G4-p48, and although both isoforms of PA2G4 regulate cellular growth and differentiation, these isoforms often have opposing roles depending on the context. Therefore, PA2G4 can function either as a contextual tumor suppressor or as an oncogene, depending on the tissue being studied. However, it is unclear how distinct structural features of the two PA2G4 isoforms translate into different functional outcomes. In this review, we examine published structures to identify important structural and functional components of PA2G4 and consider how they may explain its crucial role in the malignant phenotype. We will highlight the lysine-rich regions, protein-protein interaction sites, and post-translational modifications of the two PA2G4 isoforms and relate these to the functional cellular role of PA2G4. These data will enable a better understanding of the function and structure relationship of the two PA2G4 isoforms and highlight the care that will need to be undertaken for those who wish to conduct isoform-specific structure-based drug design campaigns.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Humanos , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Unión al ARN/genética , Relación Estructura-Actividad
14.
Genes Cells ; 25(4): 288-295, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32049412

RESUMEN

Cdb4 is a protein with unknown functions that binds to curved DNA in vitro in the fission yeast Schizosaccharomyces pombe. Homologues of Cdb4 were identified in a wide range of eukaryotes, including human Ebp1. Both S. pombe Cdb4 and human Ebp1 are nonpeptidase members of the methionine aminopeptidase family. It has been reported that Ebp1 homologues are involved in cell growth regulation and differentiation. However, opposing functions have also been considered and debated upon, and the precise biological functions of this conserved protein are largely unknown. S. pombe cdb4 is a nonessential gene, and no obvious phenotypes have been detected in cells with cdb4 gene deletion. In this study, we identified nup184, encoding a component of the nuclear pore complex, as a gene responsible for the synthetic lethal phenotype associated with cdb4. Furthermore, the synthetic lethal phenotype of Cdb4 was suppressed by over-expression of human Ebp1, suggesting that it has conserved crucial functions in S. pombe Cdb4 and human Ebp1. This synthetic lethal phenotype associated with Cdb4 and Nup184 provides a molecular genetics tool to study the functions of S. pombe Cdb4 and its conserved members of proteins, including human Ebp1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Unión al ADN/deficiencia , Células HeLa , Humanos , Proteínas de Unión al ARN/genética , Schizosaccharomyces/citología , Mutaciones Letales Sintéticas
15.
J Agric Food Chem ; 68(6): 1698-1706, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31986048

RESUMEN

Proteins of pea whey were separated by 1-D electrophoresis and 2-D electrophoresis and identified by MALDI-TOF/TOF-MS. In addition to lectin, pea albumin 2 (PA2) and pea albumin 1a (PA1a) were identified as the main 2S albumins. The complex behavior of pea whey proteins with chitosan as a function of pH and protein to polysaccharide ratio was studied by turbidimetric titration, zeta potential, and Tricine-SDS-PAGE. During pH titration, the zeta potential reveals that at maximum turbidity (pHmax), charge neutrality was fulfilled. The maximal protein recovery was obtained at a mass ratio of 1:1. After coacervation with chitosan, lectin was not involved in the formation of complexes and PA2 transferred into complex preferentially as compared to PA1a. The weak binding affinity and high hydrophilicity of PA1a made it selectively dissolve out from the PA2/PA1a complex at acidic pH conditions. After removal of chitosan and small molar weight peptides, high-purity PA2 and PA1a (>90% by SEC-HPLC) could be obtained. This work provides a novel strategy for the purification of proteins from a multiprotein pea whey system.


Asunto(s)
Albúminas/química , Quitosano/química , Proteínas de Guisantes/química , Pisum sativum/química , Electroforesis en Gel de Poliacrilamida , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Unión Proteica
16.
Chem Biol Interact ; 316: 108924, 2020 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31843629

RESUMEN

Parameritannin A-2 (PA-2) is a natural product extracted from the stems of the plant Urceola huaitingii. Our previous studies have shown that PA-2 exhibits significant synergistic anticancer effects with doxorubicin (DOX) in HGC27 gastric cancer cell lines. Here we report that our isobolographic analysis confirms the synergistic cytotoxic effects of PA-2 and DOX in HGC27 cells. Flow cytometry and immunoblotting indicate that PA-2 enhances DOX-mediated apoptosis. Importantly, PA-2 enhances the intracellular accumulation of DOX in HGC27 cells. The combination of DOX and PA-2 remarkably increases the release of cytochrome C and the activation of caspase-3 and caspase-9, compared with DOX treatment alone. Moreover, PA-2 attenuates the DOX-induced activation of Akt, ERK1/2 and p38 signaling pathways, providing a molecular mechanism for the synergistic effects of DOX and PA-2 in the induction of apoptosis. In conclusion, our studies demonstrate that PA-2 and DOX synergistically induce mitochondria-dependent apoptosis as PA-2 inhibits the PI3K/Akt, ERK1/2 and p38 pathways in HGC27 cells. These findings suggest that the combination treatment with PA-2 and DOX may represent a potent therapy for gastric cancer.


Asunto(s)
Apocynaceae/química , Apoptosis/efectos de los fármacos , Benzopiranos/farmacología , Productos Biológicos/farmacología , Mitocondrias/metabolismo , Naftalenos/farmacología , Transducción de Señal/efectos de los fármacos , Apocynaceae/metabolismo , Benzopiranos/química , Línea Celular Tumoral , Doxorrubicina/farmacología , Sinergismo Farmacológico , Humanos , Mitocondrias/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Naftalenos/química , Fosfatidilinositol 3-Quinasas/metabolismo , Tallos de la Planta/química , Tallos de la Planta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Mol Cancer ; 18(1): 166, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31752867

RESUMEN

BACKGROUND: CircRNAs are found to affect initiation and progression of several cancer types. However, whether circRNAs are implicated in gallbladder cancer (GBC) progression remains obscure. METHODS: We perform RNA sequencing in 10 pairs of GBC and para-cancer tissues. CCK8 and clone formation assays are used to evaluate proliferation ability of GBC cells. qPCR and Western blot are used to determine expression of RNAs and proteins, respectively. CircRNA-protein interaction is confirmed by RNA pulldown, RNA immunoprecipitation, and fluorescence in situ hybridization. RESULTS: We find that circRNA expression pattern is tremendously changed during GBC development. Among dozens of significantly changed circRNAs, a circRNA generated from the oncogene ERBB2, named as circERBB2, is one of the most significant changes. CircERBB2 promotes GBC proliferation, in vitro and in vivo. Other than being a miRNA sponge, circERBB2 accumulates in the nucleoli and regulates ribosomal DNA transcription, which is one of the rate-limiting steps of ribosome synthesis and cellular proliferation. CircERBB2 regulates nucleolar localization of PA2G4, thereby forming a circERBB2-PA2G4-TIFIA regulatory axis to modulate ribosomal DNA transcription and GBC proliferation. Increased expression of circERBB2 is associated with worse prognosis of GBC patients. CONCLUSIONS: Our findings demonstrate that circERBB2 serves as an important regulator of cancer cell proliferation and shows the potential to be a new therapeutic target of GBC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , ADN Ribosómico , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/metabolismo , Regulación Neoplásica de la Expresión Génica , ARN Circular , Proteínas de Unión al ARN/metabolismo , Receptor ErbB-2/genética , Empalme Alternativo , Biomarcadores de Tumor , Línea Celular Tumoral , Progresión de la Enfermedad , Neoplasias de la Vesícula Biliar/patología , Perfilación de la Expresión Génica , Humanos , Modelos Biológicos , Pronóstico , Curva ROC
18.
Oncotarget ; 8(17): 28588-28594, 2017 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-28430627

RESUMEN

In the previous study, we generated a rat model of dilated cardiomyopathy (DCM) induced by adriamycin and found that the expression of lncRNA H19 was significantly upregulated in myocardial tissue. The present study was aimed to investigate the potential role of H19 in the pathogenesis of adriamycin-induced DCM. H19 knockdown in the myocardium of DCM rats attenuated cardiomyocyte apoptosis and improved left ventricular structure and function. Adriamycin treatment was associated with elevated H19 and miR-675 expression and increased apoptosis in neonatal cardiomyocytes. Enforced expression of miR-675 was found to induce apoptosis in cardiomyocytes with adriamycin treatment and H19-siRNA transfection. The 3'-untranslated region of PA2G4 was cloned downstream of a luciferase reporter construct and cotransfected into HEK293 cells with miR-675 mimic. The results of luciferase assay showed that PA2G4 was a direct target of miR-675. The expression of PA2G4 was reduced in cardiomyocytes transfected with miR-675 mimic. Moreover, H19 knockdown was found to increase PA2G4 expression and suppress apoptosis in cardiomyocytes exposed to adriamycin. In conclusion, our study suggests that H19/miR-675 axis is involved in the promotion of cardiomyocyte apoptosis by targeting PA2G4, which may provide a new therapeutic strategy for the treatment of adriamycin-induced DCM.


Asunto(s)
Apoptosis/genética , Cardiomiopatía Dilatada/genética , Regulación de la Expresión Génica , Miocitos Cardíacos/metabolismo , ARN Largo no Codificante/genética , Animales , Cardiomiopatía Dilatada/diagnóstico por imagen , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Células Cultivadas , Masculino , MicroARNs/genética , Interferencia de ARN , Ratas
19.
Epigenetics ; 12(6): 465-475, 2017 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-28300471

RESUMEN

Hypomethylation of LINE-1 repeats in cancer has been proposed as the main mechanism behind their activation; this assumption, however, was based on findings from early studies that were biased toward young and transpositionally active elements. Here, we investigate the relationship between methylation of 2 intergenic, transpositionally inactive LINE-1 elements and expression of the LINE-1 chimeric transcript (LCT) 13 and LCT14 driven by their antisense promoters (L1-ASP). Our data from DNA modification, expression, and 5'RACE analyses suggest that colorectal cancer methylation in the regions analyzed is not always associated with LCT repression. Consistent with this, in HCT116 colorectal cancer cells lacking DNA methyltransferases DNMT1 or DNMT3B, LCT13 expression decreases, while cells lacking both DNMTs or treated with the DNMT inhibitor 5-azacytidine (5-aza) show no change in LCT13 expression. Interestingly, levels of the H4K20me3 histone modification are inversely associated with LCT13 and LCT14 expression. Moreover, at these LINE-1s, H4K20me3 levels rather than DNA methylation seem to be good predictor of their sensitivity to 5-aza treatment. Therefore, by studying individual LINE-1 promoters we have shown that in some cases these promoters can be active without losing methylation; in addition, we provide evidence that other factors (e.g., H4K20me3 levels) play prominent roles in their regulation.


Asunto(s)
Neoplasias Colorrectales/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN/genética , Azacitidina/administración & dosificación , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/biosíntesis , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Humanos , Elementos de Nucleótido Esparcido Largo/genética , Regiones Promotoras Genéticas , ADN Metiltransferasa 3B
20.
Pharm Biol ; 55(1): 96-100, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27927103

RESUMEN

CONTEXT: Agastache mexicana ssp. mexicana (Kunth) Lint & Epling (Lamiaceae), popularly known as 'toronjil morado', is used in Mexican traditional medicine for the treatment of several diseases such as hypertension, anxiety and respiratory disorders. OBJECTIVE: This study investigates the relaxant action mechanism of A. mexicana ssp. mexicana essential oil (AMEO) in guinea-pig isolated trachea model. MATERIALS AND METHOD: AMEO was analyzed by GC/MS. The relaxant effect of AMEO (5-50 µg/mL) was tested in guinea-pig trachea pre-contracted with carbachol (3 × 10 - 6 M) or histamine (3 × 10 - 5 M) in the presence or absence of glibenclamide (10 - 5 M), propranolol (3 × 10 - 6 M) or 2',5'-dideoxyadenosine (10 - 5 M). The antagonist effect of AMEO (10-300 µg/mL) against contractions elicited by carbachol (10 - 15-10 - 3 M), histamine (10 - 15-10 - 3 M) or calcium (10-300 µg/mL) was evaluated. RESULTS: Essential oil composition was estragole, d-limonene and linalyl anthranilate. AMEO relaxed the carbachol (EC50 = 18.25 ± 1.03 µg/mL) and histamine (EC50 = 13.3 ± 1.02 µg/mL)-induced contractions. The relaxant effect of AMEO was not modified by the presence of propranolol, glibenclamide or 2',5'-dideoxyadenosine, suggesting that effect of AMEO is not related to ß2-adrenergic receptors, ATP-sensitive potassium channels or adenylate cyclase activation. AMEO was more potent to antagonize histamine (pA2' = -1.507 ± 0.122) than carbachol (pA2' = -2.180 ± 0.357). Also, AMEO antagonized the calcium chloride-induced contractions. CONCLUSION: The results suggest that relaxant effect of AMEO might be due to blockade of calcium influx in guinea-pig trachea smooth muscle. It is possible that estragole and d-limonene could contribute majority in the relaxant effect of AMEO.


Asunto(s)
Agastache/química , Broncoconstricción/efectos de los fármacos , Broncodilatadores/farmacología , Relajación Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Tráquea/efectos de los fármacos , Animales , Broncodilatadores/aislamiento & purificación , Señalización del Calcio/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Cromatografía de Gases y Espectrometría de Masas , Cobayas , Técnicas In Vitro , Masculino , Músculo Liso/metabolismo , Aceites Volátiles/aislamiento & purificación , Fitoterapia , Componentes Aéreos de las Plantas , Extractos Vegetales/aislamiento & purificación , Plantas Medicinales , Tráquea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA