Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Immunol ; 14: 1243480, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915581

RESUMEN

Introduction: Toxoplasma gondii is the etiologic agent of toxoplasmosis, a disease that affects about one-third of the human population. Most infected individuals are asymptomatic, but severe cases can occur such as in congenital transmission, which can be aggravated in individuals infected with other pathogens, such as HIV-positive pregnant women. However, it is unknown whether infection by other pathogens, such as Trypanosoma cruzi, the etiologic agent of Chagas disease, as well as one of its proteins, P21, could aggravate T. gondii infection. Methods: In this sense, we aimed to investigate the impact of T. cruzi and recombinant P21 (rP21) on T. gondii infection in BeWo cells and human placental explants. Results: Our results showed that T. cruzi infection, as well as rP21, increases invasion and decreases intracellular proliferation of T. gondii in BeWo cells. The increase in invasion promoted by rP21 is dependent on its binding to CXCR4 and the actin cytoskeleton polymerization, while the decrease in proliferation is due to an arrest in the S/M phase in the parasite cell cycle, as well as interleukin (IL)-6 upregulation and IL-8 downmodulation. On the other hand, in human placental villi, rP21 can either increase or decrease T. gondii proliferation, whereas T. cruzi infection increases T. gondii proliferation. This increase can be explained by the induction of an anti-inflammatory environment through an increase in IL-4 and a decrease in IL-6, IL-8, macrophage migration inhibitory factor (MIF), and tumor necrosis factor (TNF)-α production. Discussion: In conclusion, in situations of coinfection, the presence of T. cruzi may favor the congenital transmission of T. gondii, highlighting the importance of neonatal screening for both diseases, as well as the importance of studies with P21 as a future therapeutic target for the treatment of Chagas disease, since it can also favor T. gondii infection.


Asunto(s)
Enfermedad de Chagas , Toxoplasmosis , Trypanosoma cruzi , Recién Nacido , Humanos , Femenino , Embarazo , Placenta/patología , Interleucina-8 , Toxoplasmosis/patología , Enfermedad de Chagas/patología , Proteínas Recombinantes
2.
Front Cell Infect Microbiol ; 12: 799668, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252026

RESUMEN

P21 is an immunomodulatory protein expressed throughout the life cycle of Trypanosoma cruzi, the etiologic agent of Chagas disease. In vitro and in vivo studies have shown that P21 plays an important role in the invasion of mammalian host cells and establishment of infection in a murine model. P21 functions as a signal transducer, triggering intracellular cascades in host cells and resulting in the remodeling of the actin cytoskeleton and parasite internalization. Furthermore, in vivo studies have shown that P21 inhibits angiogenesis, induces inflammation and fibrosis, and regulates intracellular amastigote replication. In this study, we used the CRISPR/Cas9 system for P21 gene knockout and investigated whether the ablation of P21 results in changes in the phenotypes associated with this protein. Ablation of P21 gene resulted in a lower growth rate of epimastigotes and delayed cell cycle progression, accompanied by accumulation of parasites in G1 phase. However, P21 knockout epimastigotes were viable and able to differentiate into metacyclic trypomastigotes, which are infective to mammalian cells. In comparison with wild-type parasites, P21 knockout cells showed a reduced cell invasion rate, demonstrating the role of this protein in host cell invasion. However, there was a higher number of intracellular amastigotes per cell, suggesting that P21 is a negative regulator of amastigote proliferation in mammalian cells. Here, for the first time, we demonstrated the direct correlation between P21 and the replication of intracellular amastigotes, which underlies the chronicity of T. cruzi infection.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Citoesqueleto de Actina/fisiología , Animales , Enfermedad de Chagas/parasitología , Técnicas de Inactivación de Genes , Estadios del Ciclo de Vida/fisiología , Mamíferos/genética , Ratones , Trypanosoma cruzi/fisiología
3.
Microb Pathog ; 135: 103618, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31310832

RESUMEN

P21 is a protein secreted by Trypanosoma cruzi (T. cruzi). Previous studies have shown a spectrum of biological activities performed by P21 such as induction of phagocytosis, leukocyte chemotaxis and inhibition of angiogenesis. However, the activity of P21 in T. cruzi infection remains unknown. Here, we reported the role of P21 in mice harboring late T. cruzi infection. Treatment with recombinant P21 protein (rP21) reduced parasite load and angiogenesis, and induced fibrosis in the cardiac tissue of infected mice. In addition, rP21 reduced the growth of epimastigotes, inhibited intracellular replication of amastigotes and modulated the parasite cell cycle. Our data suggest that P21 controls parasite replication in the host, supporting the survival of both parasite and host.


Asunto(s)
Enfermedad de Chagas/inmunología , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/inmunología , Trypanosoma cruzi/fisiología , Animales , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Ciclo Celular , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/patología , Modelos Animales de Enfermedad , Fibrosis , Corazón , Interacciones Huésped-Parásitos , Ratones , Ratones Endogámicos BALB C , Carga de Parásitos , Proteínas Protozoarias/genética , Proteínas Recombinantes , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidad
4.
Microb pathog, v. 135,103618, oct. 2019
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2807

RESUMEN

P21 is a protein secreted by Trypanosoma cruzi (T. cruzi). Previous studies have shown a spectrum of biological activities performed by P21 such as induction of phagocytosis, leukocyte chemotaxis and inhibition of angiogenesis. However, the activity of P21 in T. cruzi infection remains unknown. Here, we reported the role of P21 in mice harboring late T. cruzi infection. Treatment with recombinant P21 protein (rP21) reduced parasite load and angiogenesis, and induced fibrosis in the cardiac tissue of infected mice. In addition, rP21 reduced the growth of epimastigotes, inhibited intracellular replication of amastigotes and modulated the parasite cell cycle. Our data suggest that P21 controls parasite replication in the host, supporting the survival of both parasite and host.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA