Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Aging (Albany NY) ; 16(16): 12063-12072, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39189933

RESUMEN

OBJECTIVE: To explore the related research of PD-L1 in IRE1α/XBP-1 signaling pathway on non-small cell lung cancer. METHODS: The tumor model of mice was established and divided into four groups; after successful modeling, the tumor tissue of mice was removed for subsequent experiments; the bought THP-1 cells were grouped into four different groups, a control group, nivolumab intervention group, IRE1α inhibition group, and nivolumab intervention + IRE1α inhibition group; after co-culture of the four groups of THP-1 cells with A549, THP-1 cell protein levels in the four groups were analyzed using Western blot; A549 cell migration, invasion and proliferation were assessed using the scratch assay, Transwell method, monoclonal experiment and CCK-8 method. RESULTS: In vivo studies indicated that the stimulation of nivolumab could strongly check the progress of NSCLC (non-small cell lung); two groups treated with 4 µ8c showed obvious effects on check point of NSCLC; In vitro experiments including Western-blot experiment, Scratch experiment, Transwell method, Monoclonal experiment and CCK-8 experiment suggest that nivolumab could inhibit migration, invasion and proliferation of NSCLC tumor cells and it. CONCLUSION: PD-L1 is capable of controlling metastatic and proliferative potential of NSCLC by the way of the modification of IRE1α/XBP-1 signaling in tumor-associated macrophages.


Asunto(s)
Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Endorribonucleasas , Neoplasias Pulmonares , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Macrófagos Asociados a Tumores , Proteína 1 de Unión a la X-Box , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Animales , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Proteína 1 de Unión a la X-Box/metabolismo , Proteína 1 de Unión a la X-Box/genética , Humanos , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Proliferación Celular/efectos de los fármacos , Ratones , Macrófagos Asociados a Tumores/metabolismo , Movimiento Celular/efectos de los fármacos , Células A549 , Células THP-1
2.
Pharmacol Res ; 206: 107290, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960012

RESUMEN

The placenta, as a "transit station" between mother and fetus, has functions delivering nutrients, excreting metabolic wastes and secreting hormones. A healthy placenta is essential for fetal growth and development while the melatonergic system seems to play a critical physiological role in this organ since melatonin, its synthetic enzymes and receptors are present in the placenta. In current study, Mtnr1a and Mtnr1b knockout mice were constructed to explore the potential roles of melatonergic system played on the placental function and intrauterine growth retardation (IUGR). The result showed that Mtnr1a knockout had little effect on placental function while Mtnr1b knockout reduced placental efficiency and increased IUGR. Considering the extremely high incidence of IURG in sows, the pregnant sows were treated with melatonin. This treatment reduced the incidence of IUGR. All the evidence suggests that the intact melatonergic system in placenta is required for its function. Mechanistical studies uncovered that Mtnr1b knockout increased placental oxidative stress and apoptosis but reduced the angiogenesis. The RNA sequencing combined with histochemistry study identified the reduced angiogenesis and placental vascular density in Mtnr1b knockout mice. These alterations were mediated by the disrupted STAT3/VEGFR2/PI3K/AKT pathway, i.e., Mtnr1b knockout reduced the phosphorylation of STAT3 which is the promotor of VEGFR2. The downregulated VEGFR2 and its downstream elements of PI3K and AKT expressions, then, jeopardizes the angiogenesis and placental development.


Asunto(s)
Retardo del Crecimiento Fetal , Melatonina , Ratones Noqueados , Neovascularización Fisiológica , Placenta , Receptor de Melatonina MT2 , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Animales , Femenino , Embarazo , Placenta/metabolismo , Placenta/irrigación sanguínea , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Melatonina/farmacología , Receptor de Melatonina MT2/genética , Receptor de Melatonina MT2/metabolismo , Ratones , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT1/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Apoptosis , Ratones Endogámicos C57BL , Estrés Oxidativo , Porcinos , Angiogénesis
3.
Phytomedicine ; 132: 155779, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38876011

RESUMEN

BACKGROUND: QingChang-XiaoPi Decoction (QCXPY), a Chinese herbal prescription, has been employed in the treatment of ulcerative colitis (UC) in China. However, its molecular mechanism of action in UC remains unclear. PURPOSE: To elucidate the therapeutic effects of QCXPY against UC and reveal its mechanism of action. STUDY DESIGN: We conducted a single-arm observation to evaluate the clinical efficacy of QCXPY in patients with mild-to-moderate UC. Inclusion and exclusion criteria were established to ensure the eligibility of participants, with a focus on excluding patients with specific conditions or complications that could confound the results. METHODS: The expression of inflammatory factors in patients' serum was detected using a Luminex assay. The main components of QCXPY were identified using UHPLC-Q-TOF-MS. Network pharmacology was employed to predict potential therapeutic targets and their mechanisms of action. The efficacy of QCXPY was evaluated using a dextran sulfate sodium (DSS)-induced mouse model. Disease activity index (DAI), histopathological score, cytokine detection by ELISA, T-helper 17 (Th17) cell proportion by flow cytometry, expression of the IL-23/IL-17 axis, and changes in the levels of its downstream effectors were detected by immunohistochemistry, immunofluorescence, and western blotting. RESULTS: QCXPY could alleviate the symptoms of diarrhea, abdominal pain, abdominal distension, and purulent stool in patients with mild-to-moderate UC. Moreover, it reduced the expression of IL-6, IL-17, and IL-23 in serum; alleviated DSS-induced experimental colitis in mice; reduced DAI, pathological scores, and the expressions of IL-6, IL-17, and IL-23 in colon tissue; and decreased the proportion of pathogenic Th17 cells and the expression of STAT3 and phospho-STAT3. CONCLUSION: This study confirmed for the first time that QCXPY could alleviate intestinal symptoms, reduce the levels of serum inflammatory factors, and improve the quality of life of patients with mild-to-moderate UC. Its mechanism of action may involve reducing the secretion of inflammatory cytokines, moderating the pathogenicity of Th17 cells, and inhibiting STAT3 phosphorylation, thereby alleviating intestinal inflammation in UC.


Asunto(s)
Colitis Ulcerosa , Sulfato de Dextran , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Factor de Transcripción STAT3 , Células Th17 , Colitis Ulcerosa/tratamiento farmacológico , Animales , Células Th17/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Humanos , Masculino , Femenino , Adulto , Ratones , Factor de Transcripción STAT3/metabolismo , Persona de Mediana Edad , Interleucina-17/metabolismo , Interleucina-23 , Ratones Endogámicos C57BL , Farmacología en Red , Adulto Joven , Citocinas/metabolismo
4.
Cell Biochem Biophys ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874840

RESUMEN

ADP ribosylation factor guanylate kinase 1 (ASAP1), a key protein regulating cell migration and invasion, has attracted extensive attention in oncological research in recent years. This study aims to explore the effects of ASAP1 inhibition on lung cancer metastasis and its potential mechanisms, particularly how it modulates the tumor immune microenvironment through the p-STAT3 signaling pathway. In this study, shRNA technology was employed to specifically inhibit ASAP1 expression in lung cancer cell lines A549, NCI-H1299, and PC-9. The effects of ASAP1 inhibition on lung cancer cell viability, apoptosis, migration, and invasion were evaluated using CCK-8, TUNEL apoptosis detection, and cell migration and invasion assays. Furthermore, animal experiments were conducted to assess the in vivo effects of ASAP1 inhibition on lung cancer metastasis, and immunohistochemical analysis was performed to investigate changes in immune cells in lung metastasis models, further exploring its impact on the tumor immune microenvironment. The experimental results demonstrated that ASAP1 inhibition significantly reduced lung cancer cell viability, induced apoptosis in A549, NCI-H1299, and PC-9 cells, and suppressed the migration and invasion abilities of these cells. In vivo experiments revealed that ASAP1 inhibition effectively suppressed lung cancer metastasis and altered the tumor immune microenvironment by regulating immune cells. Moreover, we found that ASAP1 inhibition could decrease tumor cell proliferation and induce tumor apoptosis in lung metastasis models by inhibiting the p-STAT3 signaling pathway. This study confirms that ASAP1 inhibition can suppress lung cancer metastasis by modulating the tumor immune microenvironment through the inhibition of the p-STAT3 signaling pathway. These findings provide new targets for lung cancer treatment and a theoretical basis for developing novel strategies against lung cancer metastasis. Future research will further explore the mechanisms of ASAP1 in lung cancer metastasis and how to optimize treatment strategies for lung cancer patients by targeting ASAP1.

5.
Cell Commun Signal ; 22(1): 313, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844957

RESUMEN

BACKGROUND: Non-small-cell lung cancer (NSCLC) accounts for 80-85% of all lung cancer and is the leading cause of cancer-related deaths globally. Although various treatment strategies have been introduced, the 5-year survival rate of patients with NSCLC is only 20-30%. Thus, it remains necessary to study the pathogenesis of NSCLC and develop new therapeutic drugs. Notably, PYK2 has been implicated in the progression of many tumors, including NSCLC, but its detailed mechanism remains unclear. In this study, we aimed to elucidate the mechanisms through which PYK2 promotes NSCLC progression. METHODS: The mRNA and protein levels of various molecules were measured using qRT-PCR, western blot (WB), and immunohistochemistry (IHC), respectively. We established stable PYK2 knockdown and overexpression cell lines, and CCK-8, EdU, and clonogenic assays; wound healing, transwell migration, and Matrigel invasion assays; and flow cytometry were employed to assess the phenotypes of tumor cells. Protein interactions were evaluated with co-immunoprecipitation (co-IP), immunofluorescence (IF)-based colocalization, and nucleocytoplasmic separation assays. RNA sequencing was performed to explore the transcriptional regulation mediated by PYK2. Secreted VGF levels were examined using ELISA. Dual-luciferase reporter system was used to detect transcriptional regulation site. PF4618433 (PYK2 inhibitor) and Stattic (STAT3 inhibitor) were used for rescue experiments. A public database was mined to analyze the effect of these molecules on NSCLC prognosis. To investigate the role of PYK2 in vivo, mouse xenograft models of lung carcinoma were established and examined. RESULTS: The protein level of PYK2 was higher in human NSCLC tumors than in the adjacent normal tissue, and higher PYK2 expression was associated with poorer prognosis. PYK2 knockdown inhibited the proliferation and motility of tumor cells and caused G1-S arrest and cyclinD1 downregulation in A549 and H460 cells. Meanwhile, PYK2 overexpression had the opposite effect in H1299 cells. The siRNA-induced inhibition of integrins alpha V and beta 1 led to the downregulation of p-PYK2(Tyr402). Activated PYK2 could bind to STAT3 and enhance its phosphorylation at Tyr705, regulating the nuclear accumulation of p-STAT3(Tyr705). This further promoted the expression of VGF, as confirmed by RNA sequencing in a PYK2-overexpressing H1299 cell line and validated by rescue experiments. Two sites in promoter region of VGF gene were confirmed as binding sites of STAT3 by Dual-luciferase assay. Data from the TGCA database showed that VGF was related to the poor prognosis of NSCLC. IHC revealed higher p-PYK2(Tyr402) and VGF expression in lung tumors than in adjacent normal tissues. Moreover, both proteins showed higher levels in advanced TNM stages than earlier ones. A positive linear correlation existed between the IHC score of p-PYK2(Tyr402) and VGF. Knockdown of VGF inhibited tumor progression and reversed the tumor promoting effect of PYK2 overexpression in NSCLC cells. Finally, the mouse model exhibited enhanced tumor growth when PYK2 was overexpressed, while the inhibitors PF4618433 and Stattic could attenuate this effect. CONCLUSIONS: The Integrin αVß1-PYK2-STAT3-VGF axis promotes NSCLC development, and the PYK2 inhibitor PF4618433 and STAT3 inhibitor Stattic can reverse the pro-tumorigenic effect of high PYK2 expression in mouse models. Our findings provide insights into NSCLC progression and could guide potential therapeutic strategies against NSCLC with high PYK2 expression levels.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Progresión de la Enfermedad , Quinasa 2 de Adhesión Focal , Neoplasias Pulmonares , Factor de Transcripción STAT3 , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Quinasa 2 de Adhesión Focal/metabolismo , Quinasa 2 de Adhesión Focal/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Animales , Proliferación Celular/genética , Ratones , Movimiento Celular/genética , Ratones Desnudos , Línea Celular Tumoral , Transducción de Señal/genética , Regulación Neoplásica de la Expresión Génica , Ratones Endogámicos BALB C
6.
J Exp Clin Cancer Res ; 43(1): 164, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38872221

RESUMEN

BACKGROUND: Understanding the mechanisms that mediate the interaction between tumor and immune cells may provide therapeutic benefit to patients with cancer. The N6-methyladenosine (m6A) demethylase, ALKBH5 (alkB homolog 5), is overexpressed in non-small cell lung cancer. However, its role in the tumor microenvironment is unknown. METHODS: Datasets and tissue samples were used to determine the relationship between ALKBH5 expression and immunotherapy efficacy. Bioinformatic analysis, colorimetric assay to determine m6A RNA methylation, dual luciferase reporter assay, RNA/m6A-modified RNA immunoprecipitation, RNA stability assay, and RNA sequencing were used to investigate the regulatory mechanism of ALKBH5 in non-small cell lung cancer. In vitro and in vivo assays were performed to determine the contribution of ALKBH5 to the development of non-small cell lung cancer. RESULTS: ALKBH5 was upregulated in primary non-small cell lung cancer tissues. ALKBH5 was positively correlated with programmed death-ligand 1 expression and macrophage infiltration and was associated with immunotherapy response. JAK2 was identified as a target of ALKBH5-mediated m6A modification, which activates the JAK2/p-STAT3 pathway to promote non-small cell lung cancer progression. ALKBH5 was found to recruit programmed death-ligand 1-positive tumor-associated macrophages and promote M2 macrophage polarization by inducing the secretion of CCL2 and CXCL10. ALKBH5 and tumor-associated macrophage-secreted IL-6 showed a synergistic effect to activate the JAK2/p-STAT3 pathway in cancer cells. CONCLUSIONS: ALKBH5 promotes non-small cell lung cancer progression by regulating cancer and tumor-associated macrophage behavior through the JAK2/p-STAT3 pathway and the expression of CCL2 and CXCL10, respectively. These findings suggest that targeting ALKBH5 is a promising strategy of enhancing the anti-tumor immune response in patients with NSCLC and that identifying ALKBH5 status could facilitate prediction of clinical response to anti-PD-L1 immunotherapy.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Carcinoma de Pulmón de Células no Pequeñas , Progresión de la Enfermedad , Neoplasias Pulmonares , Macrófagos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Humanos , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Animales , Macrófagos/metabolismo , Macrófagos/inmunología , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Femenino , Línea Celular Tumoral , Microambiente Tumoral , Janus Quinasa 2/metabolismo , Janus Quinasa 2/genética , Masculino , Ratones Desnudos
7.
Contemp Oncol (Pozn) ; 28(1): 51-62, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800530

RESUMEN

Introduction: Death in cervical cancer patients is usually due to invasion and metastasis due to the aggressive nature of the tumour. Therefore, it is critical to identify potent therapeutic targets and prognostic markers to detect high-risk patients. Material and methods: We assessed the immunohistochemical expression of protein disulphide isomerase A3 (PDIA3) and phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in 50 cases of cervical carcinoma, and we investigated their association with clinicopathological characteristics. Results: High PDIA3 was detected in 50% of cases, and statistical analysis revealed a positive correlation between high PDAI3 expression and tumour grade (p < 0.001) and large tumour size (p = 0.010), depth of stromal invasion (p = 0.017), lymph-vascular invasion (p = 0.005), parametrial invasion (p < 0.001), nodal metastasis (p < 0.001), and higher International Federation of Gynaecology and Obstetrics stages (p < 0.001). Positive nuclear expression of p-STAT3 was detected in 44% of cases and showed significant association with histological grade (p = 0.036), tumour stage (p = 0.021), nodal metastasis (p = 0.020), and parametrial invasion (p = 0.045); statistical analysis of the patient's survival data revealed that shorter overall survival and disease-free survival, S, were associated with high PDIA3 expression and positive p-STAT3 immunoexpression. Conclusions: The high expression of PDIA3 and p-STAT3 was related to highly aggressive cervical carcinoma with poor prognosis, and high risk of recurrence after the standardised protocol of treatment. Hence, both PDIA3 and p-STAT3 could be considered as novel biomarkers for tumour progression and promising targets in the management of cervical carcinoma patients.

8.
Toxicol Appl Pharmacol ; 484: 116882, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38437956

RESUMEN

The role of O-linked N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) in the pathogenesis of inflammatory bowel disease (IBD) has been increasingly highlighted in recent studies. It's been reported that signal transducer and activator of transcription 3 (STAT3) O-GlcNAcylation can affect the activity of the Janus kinase2 (JAK2)/STAT3 pathway.Our recent study showed that resveratrol repairsIBDin mice.On this basis,the present study aimed to explore whether the mechanism of IBD repair by resveratrol is associated with STAT3 O-GlcNAcylation. Pretreatment of colitis mice and intestinal epithelial cells with an O-GlcNAcylation promoter (Thiamet G, or Glucosamine) and an O-GlcNAcylation inhibitor (OSMI-1) showed that increased O-GlcNAcylation promoted colitis in mice.The pro-inflammatory cytokines interleukin (IL) -6, IL-1ß, and tumor necrosis factor-α (TNF-α) were increased, while the anti-inflammatory cytokine IL-10 was decreased. Moreover, the downstream target proteins of JAK2/STAT3, cyclooxygenase-2 and nitric oxide synthase 2 were up-regulated, Resveratrol treatment mitigated the inflammation by decreasing JAK2/STAT3 activity, as well as STAT3 O-GlcNAcylation. Finally, the correlation between STAT3 glycosylation and phosphorylation in intestinal epithelial cells under the effect of resveratrol was investigated by Immunofluorescence co-localization and immunoprecipitation.The results showed that resveratrol inhibited STAT3 O-GlcNAcylation, thereby inhibiting its phosphorylation, reducing JAK2/STAT3 pathway activity, and alleviating IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Factor de Transcripción STAT3/metabolismo , Resveratrol/farmacología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Colitis/patología , Citocinas/metabolismo , Células Epiteliales/metabolismo , Janus Quinasa 2/metabolismo
9.
Phytomedicine ; 129: 155563, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552377

RESUMEN

BACKGROUND: Mitotic clonal expansion (MCE) is a prerequisite for preadipocyte differentiation and adipogenesis. Epigallocatechin gallate (EGCG) has been shown to inhibit preadipocyte differentiation. However, the exact molecular mechanisms are still elusive. PURPOSE: This study investigated whether EGCG could inhibit adipogenesis and lipid accumulation by regulating the cell cycle in the MCE phase of adipogenesis and its underlying molecular mechanisms. METHOD: 3T3-L1 preadipocytes were induced to differentiate by a differentiation cocktail (DMI) and were treated with EGCG (25-100 µM) for 9, 18, and 24 h to examine the effect on MCE, or eight days to examine the effect on terminal differentiation. C57BL/6 mice were fed a high-fat diet (HFD) for three months to induce obesity and were given EGCG (50 or 100 mg/kg) daily by gavage. RESULTS: We showed that EGCG significantly inhibited terminal adipogenesis and lipid accumulation in 3T3-L1 cells and decreased expressions of PPARγ, C/EBPα, and FASN. Notably, at the MCE phase, EGCG regulated the cell cycle in sequential order, induced G0/G1 arrest at 18 h, and inhibited the G2/M phase at 24 h upon DMI treatment. Meanwhile, EGCG regulated the expressions of cell cycle regulators (cyclin D1, cyclin E1, CDK4, CDK6, cyclin B1, cyclin B2, p16, and p27), and decreased C/EBPß, PPARγ, and C/EBPα expressions at MCE. Mechanistic studies using STAT3 agonist Colivelin and antagonist C188-9 revealed that EGCG-induced cell cycle arrest in the MCE phase and terminal adipocyte differentiation was mediated by the inhibition of JAK2/STAT3 signaling cascades and STAT3 (Tyr705) nuclear translocation. Furthermore, EGCG significantly protected mice from HFD-induced obesity, reduced body weight and lipid accumulations in adipose tissues, reduced hyperlipidemia and leptin levels, and improved glucose intolerance and insulin sensitivity. Moreover, RNA sequencing (RNA-seq) analysis showed that the cell cycle changes in epididymal white adipose tissue (eWAT) were significantly enriched upon EGCG treatment. We further verified that EGCG treatment significantly reduced expressions of adipogenic factors, cell cycle regulators, and p-STAT3 in eWAT. CONCLUSION: EGCG inhibits MCE, resulting in the inhibition of early and terminal adipocyte differentiation and lipid accumulation, which were mediated by inhibiting p-STAT3 nucleus translocation and activation.


Asunto(s)
Células 3T3-L1 , Adipocitos , Adipogénesis , Catequina , Dieta Alta en Grasa , Janus Quinasa 2 , Ratones Endogámicos C57BL , Factor de Transcripción STAT3 , Animales , Catequina/farmacología , Catequina/análogos & derivados , Ratones , Factor de Transcripción STAT3/metabolismo , Adipogénesis/efectos de los fármacos , Janus Quinasa 2/metabolismo , Adipocitos/efectos de los fármacos , Masculino , Mitosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Obesidad/tratamiento farmacológico , PPAR gamma/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
10.
J Pineal Res ; 76(1): e12923, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37990784

RESUMEN

Immune-pineal axis activation is part of the assembly of immune responses. Proinflammatory cytokines inhibit the pineal synthesis of melatonin while inducing it in macrophages by mechanisms dependent on nuclear factor-κB (NF-κB) activation. Cytokines activating the Janus kinase/signal transducer and activator of transcription (STAT) pathways, such as interferon-gamma (IFN-γ) and interleukin-10 (IL-10), modulate melatonin synthesis in the pineal, bone marrow (BM), and spleen. The stimulatory effect of IFN-γ upon the pineal gland depends on STAT1/NF-κB interaction, but the mechanisms controlling IL-10 effects on melatonin synthesis remain unclear. Here, we evaluated the role of STAT3 and NF-κB activation by IL-10 upon the melatonin synthesis of rats' pineal gland, BM, spleen, and peritoneal cells. The results show that IL-10-induced interaction of (p)STAT3 with specific NF-κB dimmers leads to different cell effects. IL-10 increases the pineal's acetylserotonin O-methyltransferase (ASMT), N-acetylserotonin, and melatonin content via nuclear translocation of NF-κB/STAT3. In BM, the nuclear translocation of STAT3/p65-NF-κB complexes increases ASMT expression and melatonin content. Increased pSTAT3/p65-NF-κB nuclear translocation in the spleen enhances phosphorylated serotonin N-acetyltransferase ((p)SNAT) expression and melatonin content. Conversely, in peritoneal cells, IL-10 leads to NF-κB p50/p50 inhibitory dimmer nuclear translocation, decreasing (p)SNAT expression and melatonin content. In conclusion, IL-10's effects on melatonin production depend on the NF-κB subunits interacting with (p)STAT3. Thus, variations of IL-10 levels and downstream pathways during immune responses might be critical regulatory factors adjusting pineal and extra-pineal synthesis of melatonin.


Asunto(s)
Melatonina , Glándula Pineal , Ratas , Animales , FN-kappa B/metabolismo , Glándula Pineal/metabolismo , Melatonina/farmacología , Interleucina-10/metabolismo , Transducción de Señal
11.
Front Immunol ; 14: 1182601, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781397

RESUMEN

Introduction: Tumor immunotherapy targeting PD-L1 has emerged as one of the powerful tools for tumor therapy. Numerous studies indicate that tumor-targeted drugs critically have an influence on the interaction between the immune system and tumors by changing the expression of PD-L1, which is beneficial for immunotherapy. Our study provided novel evidence for improving the drug regimen in tumor targeted therapy and immunotherapy. Methods: The expression of PD-L1 on SKBR3, MDA-MB-231, MCF7, 4T1, MC38 and B16 cells was evaluated by flow cytometry after treatment with six preclinical targeted drugs (ARN-509, AZD3514, Galeterone, Neratinib, MLN8237 and LGK974). AURKA was knockdowned by using the specific siRNA or CRISPR-Cas9 technology. In the 4T1-breast tumor and colorectal cancer xenograft tumor models, we determined the number of infiltrated CD3+ and CD8+ T cells in tumor tissues by IHC. Results: We found that AURKA inhibitor MLN8237 promoted the expression of PD-L1 in a time- and concentration-dependent manner while exerted its antitumor effect. Knockdown of AURKA could induce the upregulation of PD-L1 on SKBR3 cells. MLN8237-induced PD-L1 upregulation was mainly associated with the phosphorylation of STAT3. In the 4T1-breast tumor xenograft model, the infiltrated CD3+ and CD8+ T cells decreased after treatment with MLN8237. When treated with MLN8237 in combination with anti-PD-L1 antibody, the volumes of tumor were significantly reduced and accompanied by increasing the infiltration of CD3+ and CD8+ T cells in colorectal cancer xenograft tumor model. Discussion: Our data demonstrated that MLN8237 improved the effect of immunology-related therapy on tumor cells by interacting with anti-PD-L1 antibody, which contributed to producing creative sparks for exploring the possible solutions to overcoming drug resistance to tumor targeted therapy.


Asunto(s)
Neoplasias de la Mama , Neoplasias Colorrectales , Femenino , Humanos , Aurora Quinasa A/metabolismo , Antígeno B7-H1/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Regulación hacia Arriba , Animales
12.
Cancers (Basel) ; 15(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37835401

RESUMEN

BACKGROUND: Embryonic antigens (EA) regulate pluripotency, self-renewal, and differentiation in embryonic stem (ES) cells during their development. In adult somatic cells, EA expression is normally inhibited; however, EAs can be re-expressed by cancer cells and are involved in the deregulation of different signaling pathways (SPs). In the context of AML, data concerning the expression of EAs are scarce and contradictory. METHODS: We used mass cytometry to explore the expression of EAs and three SPs in myeloid cells from AML patients and normal bone marrow (NBM). Imaging flow cytometry was used for morphological assessment of cells in association with their OCT3/4 expression status (positive vs. negative). RESULTS: An overall reduction in or absence of EA expression was observed in immature myeloid cells from AML patients compared to their normal counterparts. Stage-specific embryonic antigen-3 (SSEA-3) was consistently expressed at low levels in immature myeloid cells, whereas SSEA-1 was overexpressed in hematopoietic stem cells (HSCs) and myeloblasts from AML with monocytic differentiation (AML M4/M5). Therefore, these markers are valuable for distinguishing between normal and abnormal myeloid cells. These preliminary results show that the exploration of myeloid cell intracellular SPs in the setting of AML is very informative. Deregulation of three important leukemogenic SPs was also observed in myeloid cells from AML. CONCLUSIONS: Exploring EAs and SPs in myeloid cells from AML patients by mass cytometry may help identify characteristic phenotypes and facilitate AML follow-up.

13.
Environ Toxicol Pharmacol ; 104: 104300, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37866414

RESUMEN

Bisphenol S (BPS) is an incipient threat for reproductive health augmenting societal burden of infertility worldwide. In the present study, we investigated the mechanism of BPS induced testicular dysfunctions and protective actions of melatonin in mice. BPS (150 mg/kg BW) treatment reduced serum T3/T4, testosterone and elevated insulin levels along with adverse effect on thyroid and testicular histoarchitecture. Further, BPS treatment compromised sperm quality, reduced mRNA expression of steroidogenic (StAR/CYP11A1) markers, elevated oxidative load and disrupts metabolic status. However, melatonin (5 mg/kg BW) administration to BPS treated mice showed improved hormonal/histological parameters, enhanced thyroid hormone (TR-α/Dio-2)/melatonin (MT-1) receptor expressions. Further, melatonin treatment modulated the expression of testicular survival/redox (SIRT1/PGC-1α/FOXO-1, Nrf2/HO-1, p-JAK2/p-STAT3), proliferative (PCNA) and metabolic (IR/pAKT/GLUT-1) markers. Furthermore, melatonin treatment enhanced testicular antioxidant status and reduced caspase-3 expression. In conclusion, our results showed that BPS induces endocrine/oxidative and metabolic anomalies while melatonin improved male reproductive health.


Asunto(s)
Melatonina , Masculino , Ratones , Animales , Melatonina/farmacología , Semen/metabolismo , Testículo , Antioxidantes/farmacología , Oxidación-Reducción , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/farmacología , Estrés Oxidativo , Homeostasis
14.
J Cancer Res Clin Oncol ; 149(15): 14169-14183, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37553421

RESUMEN

BACKGROUND: The understanding of radiation resistance is still unclear. This study aims to explore the new mechanism of radiation resistance in lung cancer from the perspective of lipid metabolism. METHODS: Oil red O was used to detect the amount of lipid droplets in high-dose radiation-resistant lung cancer cells (HDRR-LCCs) and the primary lung cancer cells. Western blot analysis was used to determine the protein expression levels of key molecules related to de novo fatty acid synthesis and fatty acid transport. Orlistat was used to inhibit the de novo fatty acid synthesis. The prediction of the transcriptional regulators of fatty acid synthetase (FASN) was analyzed by bioinformatics. AZD-1480 was used to inhibit the JAK2/STAT3 pathway to observe its effects on FASN and intracellular lipid droplets. The regulation of the transcription factor p-STAT3 on the FASN gene was verified by Chip-qPCR. Finally, we used the public data of lung cancer patients to analyze the correlation between FASN and LPL gene expression with the prognosis. RESULTS: There were more lipid drops in the HDRR-LCCs than in the primary lung cancer cells. HDRR-LCCs preferred de novo synthesis of fatty acids, and high expression of LPL homodimers indicated a high intake of extracellular fatty acids. The expression of FASN was increased in HDRR-LCCs compared with the primary lung cancer cells in a radiation-dose-dependent way, while LPL homodimers did not show such a trend. The lipid droplets, cell proliferation, and radiation resistance were decreased in HDRR-LCCs after orlistat treatment. Lipid droplets were significantly reduced, and the protein expression of FASN also decreased when using AZD-1480 to inhibit the JAK2/STAT3 pathway. The Chip-qPCR showed that p-STAT3 was the upstream regulator which binds to the promoter region of FASN. Survival analysis showed that high expression of the FASN gene was associated with a poor prognosis in lung cancer patients who received radiotherapy. CONCLUSION: Our studies discovered that lipids deposited in HDRR-LCCs were due to endogenous de novo fatty acids synthesis and exogenous lipids uptake. JAK2/p-TAT3/FASN could be used as promising targets for radiotherapy sensitization. Our study provided a new theoretical basis for studying the mechanism of radiation resistance in lung cancer.

15.
Clin Immunol ; 254: 109690, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37423488

RESUMEN

BACKGROUND: Metrnl play an immunocytokine-like role in several diseases, which is also known as meteorin-like because it is homologous to the neurotrophic factor meteorin (Metrn). Although the expression and function of Metrnl, including neurotrophic, immunomodulatory, and insulin resistance functions in different tissues have been extensively studied, its role in sepsis has remained largely limited. METHODS: The present work analyzed the levels of Metrnl and cytokines in the circulation, such as tumor necrosis factor (TNF-α), interleukin (IL-1)ß, IL-6, IL-8, together with IL-10 among septic adult patients. Clinical information was obtained from such patients, including sofa score, procalcitonin(PCT)count, and C-reactive count (CRP) within 24 h when entering the intensive care unit (ICU). We constructed a sepsis model in Metrnl-deficient or normal wild-type mice using cecal ligation and perforation to study its functions in bacterial burden, survival, cytokine/chemokine generation, peritoneal lavage fluid neutrophils, macrophage and lymphocyte recruitment, and Treg/Th17 immune cell balance after CLP-induced sepsis. RESULTS: The expression of Metrnl was remarkably elevated in the early phase of sepsis clinically. Its serum content in patients dying of sepsis slightly decreased relative to that in survivors. Furthermore, the concentration of Metrnl in septic cases when entering the ICU independently predicted the 28-day mortality. For septic patients who had low serum Metrnl content (≤ 274.40 pg/mL), the death risk increased by 2.3 folds relative to those who had a high serum content. It is reported that Metrnl is probably insufficient among patients dying of sepsis. Additionally, the content of Metrnl in the serum of septic patients when entering the ICU is markedly and negatively related to the levels of TNF-α, IL-1ß, IL-6, IL-8, IL-17, PCT, and Sofa score. Collectively, Metrnl could be a potential therapeutic target for sepsis. A low-lethality non-severe sepsis (NSS) model was constructed, which suggested that Metrnl insufficiency elevated the death rate and reduced bacterial clearance during sepsis. For Metrnl-deficient mice, impaired sepsis immunity defense might be related to decreased macrophage recruitment and Treg/Th17 lymphocyte imbalance. Recombinant Metrnl administered to Metrnl-deficient mice abolished the immunity defense impairment following NSS while protecting the high-lethality severe sepsis (SS) model in wild-type (WT) mice. In addition, Metrnl-induced sepsis prevention was intricately associated with the increased recruitment of peritoneal macrophages and modulation of the Treg/TH17 immune cell balance. Furthermore, CCL3 exposure in Metrnl-deficient mice reduced peritoneal bacterial loads while improving survival during sepsis partially by promoting the recruitment of peritoneal macrophages. Furthermore, Metrnl regulated the polarization of M1 macrophages through the ROS signaling pathway and promoted macrophage phagocytosis, thereby killing Escherichia coli. CONCLUSIONS: The present proof-of-concept work suggests that Metrnl-mediated recruitment of macrophages significantly affects sepsis defense in the host and modulates the Treg/Th17 immune cell balance. Findings in this work shed more light on the development of host-directed treatments that can be used to manipulate host immunity to treat sepsis.


Asunto(s)
Citocinas , Sepsis , Animales , Ratones , Citocinas/metabolismo , Interleucina-6/metabolismo , Interleucina-8 , Interleucinas , Macrófagos/metabolismo , Linfocitos T Reguladores , Células Th17/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
16.
Neuroscience ; 526: 314-325, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37321367

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease, and currently, no effective treatment strategies exist for this condition. MicroRNAs (miRNAs) have emerged as promising therapeutic targets of AD. Previous studies have highlighted the significant role of miR-146a-5p in regulating adult hippocampal neurogenesis (AHN). Here, we aimed to investigate whether miR-146a-5p plays a role in the mechanisms of AD. We employed quantitative real-time PCR (qRT-PCR) to assess the expression of miR-146a-5p. Additionally, we examined the expression of Krüppel-like factor 4 (Klf4), Signal transducer and activator of transcription 3 (Stat3), and phosphorylated Stat3 (p-Stat3) using western blot analysis. Furthermore, we validated the interaction between miR-146a-5p and Klf4 using a dual-luciferase reporter assay. Immunofluorescence staining was employed to evaluate AHN. And Contextual fear conditioning discrimination learning (CFC-DL) experiment was used to detect pattern separation. Our findings in the hippocampus of APP/PS1 mice revealed upregulated levels of miR-146a-5p and p-Stat3, while Klf4 levels were downregulated. Interestingly, both miR-146a-5p antagomir and p-Stat3 inhibitor obviously rescued neurogenesis and pattern separation in APP/PS1 mice. Moreover, application of miR-146a-5p agomir reversed the protective effects of Klf4 upregulation. These findings open new avenues for protection against AD through the modulation of neurogenesis and cognitive decline via the miR-146a-5p/Klf4/p-Stat3 pathway.

17.
Mol Carcinog ; 62(8): 1176-1190, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37204217

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly invasive tumor with a dismal prognosis. Recent studies have demonstrated PTPN2 (protein tyrosine phosphatase nonreceptor type 2) as a potential target for cancer therapy. However, the functions of PTPN2 in PDAC progression remain poorly understood. In this study, we found PTPN2 expression was downregulated in PDAC tissues, and decreased PTPN2 expression was associated with unfavorable prognosis. Functional studies indicated that PTPN2 knockdown promoted the migration and invasion abilities of PDAC cells in vitro, and the liver metastasis in vivo through epithelial-mesenchymal transition process. Mechanistically, MMP-1 was identified as a downstream target of PTPN2 via RNA-seq data and was responsible for the enhanced metastasis of PDAC cells upon PTPN2 knockdown. Moreover, according to chromatin immunoprecipitation and electrophoretic mobility shift assay, PTPN2 depletion transcriptionally activated MMP-1 via regulating the interaction of p-STAT3 with its distal promoter. This study, for the first time, demonstrated that PTPN2 inhibited PDAC metastasis, and presented a novel PTPN2/p-STAT3/MMP-1 axis in PDAC progression.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Metaloproteinasa 1 de la Matriz , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Proliferación Celular , Invasividad Neoplásica , Movimiento Celular , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas
18.
Biochem Pharmacol ; 209: 115440, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36720354

RESUMEN

Cisplatin is commonly used to treat cancers and is associated with a significant risk of irreversible sensorineural hearing loss. However, no effective preventive strategies are available for cisplatin-induced HL. Therefore, significant efforts have been made to discover new drugs protecting cochlear hair cells from cisplatin-induced damage. We found that a new phytochemical, aucubin, attenuated cisplatin-induced apoptosis, the production of reactive oxygen species, and mitochondrial dysfunction in House Ear Institute Organ of Corti 1 cells and cochlear hair cells. Moreover, aucubin attenuated cisplatin-induced sensorineural hearing loss and hair cells loss in vivo. Furthermore, RNA sequencing analysis revealed that the otoprotective effects of aucubin were mainly mediated by increased STAT3 phosphorylation via the PI3K/AKT pathway. Inhibition of the STAT3 signaling pathway with the inhibitor S3I-201 or siRNA disrupted the protective effects of aucubin on cisplatin-induced apoptosis. In conclusion, we identified an otoprotective effect of aucubin. Therefore, aucubin could be used to prevent cisplatin-induced ototoxicity.


Asunto(s)
Antineoplásicos , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Ototoxicidad , Ratones , Animales , Cisplatino/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/tratamiento farmacológico , Pérdida Auditiva/prevención & control , Ototoxicidad/metabolismo , Cóclea/metabolismo , Células Ciliadas Auditivas , Apoptosis , Especies Reactivas de Oxígeno/metabolismo , Pérdida Auditiva Sensorineural/tratamiento farmacológico , Pérdida Auditiva Sensorineural/metabolismo , Antineoplásicos/farmacología
19.
Cancers (Basel) ; 15(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36672337

RESUMEN

Lipidomic analyses have suggested that palmitic acid (PA) is linked to gastric cancer. However, its effects and action mechanisms remain unclear. Therefore, we evaluated the effects of PA on cell proliferation, invasion, and apoptosis in human gastric cancer, as well as the role of p-STAT3 in mediating its effects. The results of the MTT and colony formation assays revealed that PA blocked gastric cancer cell proliferation in a concentration-dependent manner. The EdU-DNA assay indicated that 50 µM of PA could block gastric cell proliferation by 30.6-80.0%. The Transwell assay also confirmed the concentration dependence of PA-induced inhibitory effect on cell invasion. The flow cytometry analysis indicated that PA treatment for 18 h could induce gastric cancer cell apoptosis. The immunohistochemical staining revealed that p-STAT3 levels were higher in the gastric cancer tissues than in the control tissues. We demonstrated that PA treatment for 12 h decreased the expressions of p-STAT3, p-JAK2, N-cadherin, and vimentin, and inhibited the nuclear expression of p-STAT3 in gastric cancer cells. Finally, PA treatment (50 mg/kg) decreased gastric cancer growth (54.3%) in the xenograft models. Collectively, these findings demonstrate that PA inhibits cell proliferation and invasion and induces human gastric cancer cell apoptosis.

20.
Comb Chem High Throughput Screen ; 26(2): 289-300, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35400339

RESUMEN

INTRODUCTION: The incidence of colorectal cancer is steadily increasing, and the detection of related molecular targets is critical for its diagnosis and treatment. Long noncoding RNA (lncRNA) can play a regulatory role before and after genome transcription, and epigenetic regulation is involved in the process of tumorigenesis and tumor development. METHODS: In this study, qRT-PCR was performed to evaluate the expression of AK093407 in colon cancer and colon para-carcinoma tissues and HCT-15 and HCT-116 cells. SiRNA was transfected into HCT-15 and HCT-116 cells to knock down lncRNA-AK093407. Then, MTT assay was used to test cell proliferation, and flow cytometry was used to test apoptosis and cell cycle. The protein expression of caspase-3, caspase-8, caspase-9, bax, bcl-2, cyclin-A1, cyclin-B1, cyclin-D1, cyclin- E1, p21, p27, and p-Stat3 was determined by Western blot. RESULTS: The results showed that the expression of AK093407 in human colon cancer tissue was higher than in para-carcinoma tissue. The amount of AK093407 in HCT-15 and HCT-116 cells was higher than that in normal colorectal epithelial NM460 cells. When AK093407 was silenced, the proliferation of HCT-15 and HCT-116 cells decreased, the apoptosis rate increased, the cell cycle was arrested in the G1/S phase, the expression of caspase-3, caspase-8, caspase-9, bax, cyclin-A1, cyclin- B1, p21, p27 increased, and the expression of bcl-2, cyclin-D1, cyclin-E1, p-Stat3 decreased. CONCLUSION: These results showed that knockdown of AK093407 could inhibit colon cancer cell proliferation, induce apoptosis and cell cycle arrest, influence the expression of vital factors in mitochondrial apoptosis pathway and cell cycle regulatory pathway, and may negatively regulate JAK/STAT3 through down-regulating p-Stat3.


Asunto(s)
Neoplasias del Colon , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Caspasa 3 , Caspasa 9 , Caspasa 8 , Epigénesis Genética , Proteína X Asociada a bcl-2 , Neoplasias del Colon/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA