Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Pediatr Exerc Sci ; : 1-7, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714302

RESUMEN

PURPOSE: The aim of this investigation was to assess alterations of pulmonary oxygen uptake (V˙O2) and muscle deoxygenation on-kinetics during heavy-intensity cycling in youth cyclists over a period of 15 months. METHODS: Eleven cyclists (initial age, 14.3 [1.6] y; peak V˙O2, 62.2 [4.5] mL·min-1·kg-1) visited the laboratory twice on 3 occasions within 15 months. Participants performed an incremental ramp exercise test and a constant workrate test within the heavy-intensity domain during the first visit and second visit, respectively. Subsequently, parameter estimates of the V˙O2 and muscle deoxygenation on-kinetics were determined with mono-exponential models. RESULTS: The V˙O2 phase II time constant decreased from occasion 1 (34 [4] s) to occasion 2 (30 [4] s, P = .005) and 3 (28 [4] s, P = .010). However, no significant alteration was observed between occasions 2 and 3 (P = .565). The V˙O2 slow component amplitude either expressed in absolute values (ie, L·min-1) or relative to end exercise V˙O2 (ie, %) showed no significant changes throughout the study (P = .972 and .996). Furthermore, the muscle deoxygenation on-kinetic mean response time showed no significant changes throughout the study (18 [8], 18 [3], and 16 [5] s for occasions 1, 2, and 3, respectively; P = .279). CONCLUSION: These results indicate proportional enhancements of local muscle oxygen distribution and utilization, which both contributed to the speeding of the V˙O2 on-kinetics herein.

2.
Proc Natl Acad Sci U S A ; 121(11): e2317702121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38446850

RESUMEN

The electro-Fenton process is a state-of-the-art water treatment technology used to remove organic contaminants. However, the low O2 utilization efficiency (OUE, <1%) and high energy consumption remain the biggest obstacles to practical application. Here, we propose a local O2 concentrating (LOC) approach to increase the OUE by over 11-fold compared to the conventional simple O2 diffusion route. Due to the well-designed molecular structure, the LOC approach enables direct extraction of O2 from the bulk solution to the reaction interface; this eliminates the need to pump O2/air to overcome the sluggish O2 mass transfer and results in high Faradaic efficiencies (~50%) even under natural air diffusion conditions. Long-term operation of a flow-through pilot device indicated that the LOC approach saved more than 65% of the electric energy normally consumed in treating actual industrial wastewater, demonstrating the great potential of this system-level design to boost the electro-Fenton process for energy-efficient water remediation.

3.
Front Sports Act Living ; 4: 982548, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465580

RESUMEN

Purpose: The main purpose of the current study was to investigate the dynamic adjustment of pulmonary oxygen uptake ( V . O2) in response to moderate-intensity cycling on three occasions within 15 months in competitive youth cyclists. Furthermore, the muscle Δdeoxy[heme] on-kinetics and the Δdeoxy[heme]-to- V . O2 ratio were modeled to examine possible mechanistic basis regulating pulmonary V . O2 on-kinetics. Methods: Eleven cyclists (initial age, 14.3 ± 1.6 y; peak V . O2, 62.2 ± 4.5 mL.min-1.kg-1) with a training history of 2-5 years and a training volume of ~10 h per week participated in this investigation. V . O2 and Δdeoxy[heme] responses during workrate-transitions to moderate-intensity cycling were measured with breath-by-breath spirometry and near-infrared spectroscopy, respectively, and subsequently modeled with mono-exponential models to derive parameter estimates. Additionally, a normalized Δdeoxy[heme]-to- V . O2 ratio was calculated for each participant. One-way repeated-measures ANOVA was used to assess effects of time on the dependent variables of the responses. Results: The V . O2 time constant remained unchanged between the first (~24 s) and second visit (~22 s, P > 0.05), whereas it was significantly improved through the third visit (~13 s, P = 0.006-0.013). No significant effects of time were revealed for the parameter estimates of the Δdeoxy[heme] response (P > 0.05). A significant Δdeoxy[heme]-to- V . O2 ratio "overshoot" was evident on the first (1.09 ± 0.10, P = 0.006) and second (1.05 ± 0.09, P = 0.047), though not the third (0.97 ± 0.10, P > 0.05), occasion. These "overshoots" showed strong positive relationships with the V . O2 time constant during the first (r = 0.66, P = 0.028) and second visit (r = 0.76, P = 0.007). Further, strong positive relationships have been observed between the individual changes of the fundamental phase τp and the Δdeoxy[heme]-to- V . O2 ratio "overshoot" from occasion one to two (r = 0.70, P = 0.017), and two to three (r = 0.74, P = 0.009). Conclusion: This suggests that improvements in muscle oxygen provision and utilization capacity both occurred, and each may have contributed to enhancing the dynamic adjustment of the oxidative "machinery" in competitive youth cyclists. Furthermore, it indicates a strong link between an oxygen maldistribution within the tissue of interrogation and the V . O2 time constant.

4.
Adv Physiol Educ ; 46(4): 685-692, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36201307

RESUMEN

The interchange among the energy-providing phosphagen, glycolytic, and aerobic systems during exercise is often poorly understood by beginning students in exercise physiology. Exercise is oftentimes thought of as being aerobic or anaerobic, with the body progressing sequentially from one system to the next, although the energy systems work synergistically to produce energy from the onset of exercise, and all ultimately use oxygen. Traditional methods of teaching these concepts using only indirect calorimetry and a metabolic cart can be misleading. Relatively inexpensive noninvasive monitors of muscle oxygenation levels ([Formula: see text]) provide a useful tool to help students better understand the contribution and timing of these three systems of ATP generation and convey the concept that ultimately all energy production in the human body is oxygen dependent. In this laboratory, students use near-infrared spectroscopy (NIRS) to visualize oxygen utilization by skeletal muscle during exercise by devising three exercise unique protocols, with each designed to stress a different energy system. Students then perform their protocols while using NIRS to measure and analyze [Formula: see text]. Students generate graphs with collected data, allowing them to visualize and appreciate oxygen consumption during all three protocols as well as elevated oxygen consumption after exercise. The students learn that any exercise is really all about oxygen.NEW & NOTEWORTHY Traditional methods of teaching bioenergetics using indirect calorimetry and a metabolic cart may be misleading. Recent advances in technology have made near-infrared spectroscopy (NIRS) a relatively inexpensive, noninvasive means of monitoring muscle oxygen levels during exercise. In this laboratory activity, NIRS devices are used for hands-on exploration of the synergistic nature of the energy systems, allowing students to appreciate the synergistic nature of the energy systems and how all exercise is really all about oxygen.


Asunto(s)
Oxígeno , Espectroscopía Infrarroja Corta , Humanos , Espectroscopía Infrarroja Corta/métodos , Consumo de Oxígeno/fisiología , Metabolismo Energético/fisiología , Músculo Esquelético/fisiología
5.
Front Aging Neurosci ; 14: 919343, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35959288

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease, with typical motor symptoms as the main clinical manifestations. At present, there are about 10 million patients with PD in the world, and its comorbidities and complications are numerous and incurable. Therefore, it is particularly important to explore the pathogenesis of PD and find possible therapeutic targets. Because the etiology of PD is complex, involving genes, environment, and aging, finding common factors is the key to identifying intervention targets. Hypoxia is ubiquitous in the natural environment and disease states, and it is considered to be closely related to the etiology of PD. Despite research showing that hypoxia increases the expression and aggregation of alpha-synuclein (α-syn), the most important pathogenic protein, there is still a lack of systematic studies on the role of hypoxia in α-syn pathology and PD pathogenesis. Considering that hypoxia is inextricably linked with various causes of PD, hypoxia may be a co-participant in many aspects of the PD pathologic process. In this review, we describe the risk factors for PD, and we discuss the possible role of hypoxia in inducing PD pathology by these risk factors. Furthermore, we attribute the pathological changes caused by PD etiology to oxygen uptake disorder and oxygen utilization disorder, thus emphasizing the possibility of hypoxia as a critical link in initiating or promoting α-syn pathology and PD pathogenesis. Our study provides novel insight for exploring the pathogenesis and therapeutic targets of PD.

6.
Bioresour Technol ; 361: 127697, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35905876

RESUMEN

To investigate the effect of intermittent aeration on oxygen dynamics, organic matter degradation and main gas emissions, a lab-scale pig manure composting experiment was conducted with intermittent aeration (I_A, 30-min on and 30-min off) and continuous aeration (C_A). Although aeration volume and oxygen supply of I_A was only half of C_A, I_A could obviously enhance the oxygen utilization efficiency by 96.67 % and reduce energy dissipation for aeration by 50.87 %. Based on the comprehensive analysis of total organic matter, total carbon, total nitrogen, cellulose, hemicellulose and lignin contents, there was no significant difference in organic matter degradation between I_A and C_A (p > 0.05). Moreover, a reduction of 21.71 %, 38.93 %, 44.40 % and 62.19 % of CH4, N2O and the total GHG emission equivalent as well as NH3 emissions was realized, respectively, in I_A compared with C_A. Therefore, adopting intermittent aeration was a useful strategy and choice for high-efficiency, high-quality and environment-friendly composting.


Asunto(s)
Compostaje , Estiércol , Animales , Metano , Nitrógeno/metabolismo , Oxígeno , Suelo , Porcinos
7.
Sci Total Environ ; 842: 156929, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-35753460

RESUMEN

The insufficient oxygen supply in partial materials commonly results in significant greenhouse gas emissions during composting, which is essentially attributed to the poor electron transfer in the composting systems. Electric field-assisted aerobic composting (EAC) is considered effective in mitigation of greenhouse gas emissions, but the poor conductivity of composting materials hampers its efficiency and applicability. In this study, conductive biochar was added in the EAC system to investigate its effects on the performance and greenhouse gas emissions during the composting processes. In the system of EAC with biochar, the electrochemical properties, O2 utilization and composting performance were improved compared to the systems without biochar or assisted electric field. The maximum current of EAC with biochar was 0.32 A, higher than that without biochar (0.28A). Particularly, the peak concentrations of CH4 and N2O in the EAC system with biochar were 0.86 mg·kg-1 and 1.43 mg·kg-1, which were 45 % and 27 % lower than those in the EAC without biochar, respectively. The direct global warming potential attributed to CO2, CH4, and N2O was 3.96 g CO2-equivalent·kg-1 dry mass, providing a 31.6 % reduction compared to conventional composting. Microbial analyses revealed that biochar increased the relative abundance of electroactive bacteria including Bacillus, Tepidimicrobium and Corynebacterium. In contrast, the abundances of potential nitrifying and denitrifying bacterial species of Pseudomonas, Corynebacterium, Acinetobacter, and Bacillus were significantly lowered in the biochar-assisted EAC system (11.35 %). The results showed that the addition of biochar was able to promote the electrical conductivity of composting materials and accelerate the organic oxidation process by increasing O2 consumption, and accordingly change the dominant microbial community on both composting and biochar particles. This study verified the mechanism of the effectiveness of biochar in greenhouse gas control in composting processes, and thus provided evidence for facilitating the sustainable development of composting technologies.


Asunto(s)
Compostaje , Gases de Efecto Invernadero , Bacterias , Dióxido de Carbono/análisis , Carbón Orgánico/análisis , Conductividad Eléctrica , Gases de Efecto Invernadero/análisis , Metano/análisis , Óxido Nitroso/análisis , Oxígeno/análisis , Suelo/química
8.
Pediatr Cardiol ; 43(5): 1122-1130, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35107629

RESUMEN

Peak exercise parameters are considered the gold standard to quantify cardiac reserve in cardiopulmonary exercise testing (CPET). We studied whether submaximal parameters would add additional values in analyzing sex differences in CPET. We reviewed CPET of age-matched healthy male and female adolescents by cycle ergometer. Besides peak parameters, submaximal CPET parameters, including ventilatory anaerobic threshold (VAT), oxygen uptake efficiency slope (OUES), and submaximal slopes of Δoxygen consumption (ΔVO2)/Δwork rate (ΔWR), Δheart rate (ΔHR)/ΔWR, ΔVO2/ΔHR, and Δminute ventilation (ΔVE)/ΔCO2 production (ΔVCO2), were obtained. We studied 35 male and 40 female healthy adolescents. Peak VO2 (pVO2), peak oxygen pulse (pOP), and VAT were significantly lower in females than males (1.9 ± 0.4 vs. 2.5 ± 0.6 L/min; 10 ± 2.0 vs. 13.2 ± 3.5 ml/beat; 1.23 ± 0.3 vs. 1.52 ± 0.5 L/min, respectively, all p < 0.005). Females showed significantly lower pVO2, VAT, and OUES with the same body weight than males, implying higher skeletal muscle mass in males. When simultaneously examining ΔHR/ΔWR and pOP, females showed higher dependency on increases in HR than in stroke volume. Females demonstrated significantly lower pOP with the same levels of ΔVO2/ΔHR, suggesting more limited exercise persistence than males under an anaerobic condition at peak exercise. Oxygen uptake efficiency in relation to peak VE was significantly higher in males. There was no sex difference in either ΔVO2/ΔWR or ΔVE/ΔVCO2. Combinational assessment of peak and submaximal CPET parameters delineates the multiple mechanisms that contribute to the sex differences in exercise performance.


Asunto(s)
Prueba de Esfuerzo , Caracteres Sexuales , Adolescente , Ejercicio Físico/fisiología , Femenino , Humanos , Masculino , Oxígeno , Consumo de Oxígeno/fisiología
9.
Front Bioeng Biotechnol ; 9: 773104, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34765597

RESUMEN

Sophorolipids (SLs) are homologous microbial secondary metabolites produced by Starmerella bombicola and have been widely applied in many industrial fields. The biosynthesis of SLs is a highly aerobic process and is often limited by low dissolved oxygen (DO) levels. In this study, the Vitreoscilla hemoglobin (VHb) gene was transformed into S. bombicola O-13-1 by homologous recombination to alleviate oxygen limitation. VHb expression improved the intracellular oxygen utilization efficiency under either oxygen-rich or oxygen-limited conditions. In shake flask culture, the production of SLs was higher in the recombinant (VHb+) strain than in the wild-type (VHb-) strain, while the oxygen uptake rate of the recombinant (VHb+) strain was significantly lower than that of the wild-type (VHb-) strain. In a 5 L bioreactor, the production of SLs did not increase significantly, but the DO level in the fermentation broth of the VHb+ strain was 21.8% higher than that of VHb- strain under oxygen-rich conditions. Compared to wide-type strains (VHb-), VHb expression enhanced SLs production by 25.1% in the recombinants (VHb+) under oxygen-limited conditions. In addition, VHb expression raised the transcription levels of key genes involved in the electron transfer chain (NDH, SDH, COX), TCA cycle (CS, ICD, KDG1) and SL synthesis (CYP52M1 and UGTA1) in the recombinant (VHb+) strains. VHb expression in S. bombicola could enhance SLs biosynthesis and intracellular oxygen utilization efficiency by increasing ATP production and cellular respiration. Our findings highlight the potential use of VHb to improve the oxygen utilization efficiency of S. bombicola in the industrial-scale production of SLs using industrial and agricultural by-products like molasses and waste oil as fermentation feedstock.

10.
Bioresour Technol ; 337: 125359, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34126360

RESUMEN

Electric field-assisted aerobic composting (EAC) has been considered as a novel and effective process for enhancing compost maturation. However, the poor conductivity of compost piles affects the efficiency and applicability of EAC. Thus, this study aims to examine how conductive biochar affects compost maturation in biochar-added electric field-assisted aerobic composting (b-EAC). Our results demonstrated that the germination index and humus index significantly increased, and the compost maturation time was shortened by nearly 25% during b-EAC compared to EAC. The total oxygen utilization rate and total relative abundance of electroactive bacteria during b-EAC increased by approximately two and three times those in EAC, respectively. These findings indicated that the addition of conductive biochar has a synergistic effect which facilitated oxygen utilization by reducing resistance and accelerating electron transfer. Therefore, the addition of conductive biochar is proved to be an effective and applicable strategy for optimizing the efficiency of EAC.


Asunto(s)
Compostaje , Bacterias , Carbón Orgánico , Suelo
11.
Eur J Appl Physiol ; 121(5): 1283-1296, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33575912

RESUMEN

PURPOSE: We tested the hypothesis that incremental ramp cycling exercise performed in the supine position (S) would be associated with an increased reliance on muscle deoxygenation (deoxy[heme]) in the deep and superficial vastus lateralis (VLd and VLs, respectively) and the superficial rectus femoris (RFs) when compared to the upright position (U). METHODS: 11 healthy men completed ramp incremental exercise tests in S and U. Pulmonary [Formula: see text]O2 was measured breath-by-breath; deoxy[heme] was determined via time-resolved near-infrared spectroscopy in the VLd, VLs and RFs. RESULTS: Supine exercise increased the overall change in deoxy[heme] from baseline to maximal exercise in the VLs (S: 38 ± 23 vs. U: 26 ± 15 µM, P < 0.001) and RFs (S: 36 ± 21 vs. U: 25 ± 15 µM, P < 0.001), but not in the VLd (S: 32 ± 23 vs. U: 29 ± 26 µM, P > 0.05). CONCLUSIONS: The present study supports that the impaired balance between O2 delivery and O2 utilization observed during supine exercise is a regional phenomenon within superficial muscles. Thus, deep muscle defended its O2 delivery/utilization balance against the supine-induced reductions in perfusion pressure. The differential responses of these muscle regions may be explained by a regional heterogeneity of vascular and metabolic control properties, perhaps related to fiber type composition.


Asunto(s)
Ejercicio Físico/fisiología , Oxígeno/metabolismo , Músculo Cuádriceps/metabolismo , Posición de Pie , Posición Supina , Ciclismo/fisiología , Voluntarios Sanos , Humanos , Masculino , Espectroscopía Infrarroja Corta , Adulto Joven
12.
J Comp Physiol B ; 191(2): 255-271, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33547930

RESUMEN

The hagfishes are an ancient and evolutionarily important group, with breathing mechanisms and gills very different from those of other fishes. Hagfish inhale through a single nostril via a velum pump, and exhale through multiple separate gill pouches. We assessed respiratory performance in E. stoutii (31 ppt, 12 ºC, 50-120 g) by measuring total ventilatory flow ([Formula: see text]) at the nostril, velar (respiratory) frequency (fr), and inspired (PIO2) and expired (PEO2) oxygen tensions at all 12 gill pouch exits plus the pharyngo-cutaneous duct (PCD) on the left side, and calculated ventilatory stroke volume (S[Formula: see text]), % O2 utilization, and oxygen consumption (MO2). At rest under normoxia, spontaneous changes in [Formula: see text] ranged from apnea to > 400 ml kg-1 min-1, due to variations in both fr and S[Formula: see text]; "normal" [Formula: see text] averaged 137 ml kg-1 min-1, MO2 was 718 µmol kg-1 h-1, so the ventilatory convection requirement for O2 was about 11 L mmol-1. Relative to anterior gill pouches, lower PEO2 values (i.e. higher utilization) occurred in the more posterior pouches and PCD. Overall, O2 utilization was 34% and did not change during hyperventilation but increased to > 90% during hypoventilation. Environmental hypoxia (PIO2 ~ 8% air saturation, 1.67 kPa, 13 Torr) caused hyperventilation, but neither acute hyperoxia (PIO2 ~ 275% air saturation, 57.6 kPa, 430 Torr) nor hypercapnia (PICO2 ~ 1% CO2, 1.0 kPa, 7.5 Torr) significantly altered [Formula: see text]. MO2 decreased in hypoxia and increased in hyperoxia but did not change in hypercapnia. Acute exposure to high environmental ammonia (HEA, 10 mM NH4HCO3) caused an acute decrease in [Formula: see text], in contrast to the hyperventilation of long-term HEA exposure described in a previous study. The hypoventilatory response to HEA still occurred during hypoxia and hyperoxia, but was blunted during hypercapnia. Under all treatments, MO2 increased with increases in [Formula: see text]. Overall, there were lower convection requirements for O2 during hyperoxia, higher requirements during hypoxia and hypercapnia, but unchanged requirements during HEA. We conclude that this "primitive" fish operates a flexible respiratory system with considerable reserve capacity.


Asunto(s)
Anguila Babosa , Amoníaco , Animales , Hipercapnia , Hipoxia , Oxígeno , Respiración
13.
Mar Pollut Bull ; 163: 111939, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33383319

RESUMEN

We report seasonal and temporal variation of total organic carbon (TOC) in the eastern Arabian Sea (AS). In comparison to the deep, TOC in the top 100 m showed spatial variation with higher concentrations towards northern AS during North east monsoon (NEM) and South west monsoon (SWM). A comparison with the US-JGOFS data (1995) shows warmer temperatures, enhanced TOC and low chlorophyll in the recent years. High TOC is associated with Arabian Sea high saline waters (ASHSW), advected from the Arabian Gulf, might have resulted in an enhancement of TOC in the eastern AS. This excess TOC supports a high abundance of bacteria despite the low primary productivity. TOC oxidation accounted for 14.3% and 22.5% of oxygen consumption for waters with potential density between 24.5 and 27.3 kg/m3. This study attains great significance considering the missing links with respect to the role of transport processes in ocean deoxygenation under ongoing warming scenarios.


Asunto(s)
Oxígeno , Agua de Mar , Carbono , Clorofila
14.
Pflugers Arch ; 472(11): 1619-1630, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32940783

RESUMEN

Mitochondria are important sites for the production of ATP and the generation of ROS in cells. However, whether acute hypoxia increases ROS generation in cells or affects ATP production remains unclear, and therefore, monitoring the changes in ATP and ROS in living cells in real time is important. In this study, cardiomyocytes were transfected with RoGFP for ROS detection and MitGO-Ateam2 for ATP detection, whereby ROS and ATP production in cardiomyocytes were respectively monitored in real time. Furthermore, the oxygen consumption rate (OCR) of cardiomyocytes was measured. Similar results were produced for adult and neonatal rat cardiomyocytes. Hypoxia (1% O2) reduced the basal OCR, ATP-linked OCR, and maximal OCR in cardiomyocytes compared with these OCR levels in the cardiomyocytes in the normoxic group (21% O2). However, ATP-linked OCR, normalized to maximal OCR, was increased during hypoxia, indicating that the electron leakage of complex III exacerbated the increase of ATP-linked oxygen consumption during hypoxia and vice versa. Combined with the result that cardiomyocytes expressing MitGO-Ateam2 showed a significant decrease in ATP production during hypoxia compared with that of normoxic group, acute hypoxia might depress the mitochondrial oxygen utilization efficiency of the cardiomyocytes. Moreover, cardiomyocytes expressing Cyto-RoGFP or IMS-RoGFP showed an increase in ROS generation in the cytosol and the mitochondrial intermembrane space (IMS) during hypoxia. All of these results indicate that acute hypoxia generated more ROS in complex III and increased mitochondrial oxygen consumption, leading to less ATP production. In conclusion, acute hypoxia depresses the mitochondrial oxygen utilization efficiency by decreasing ATP production and increasing oxygen consumption as a result of the enhanced ROS generation at mitochondrial complex III.


Asunto(s)
Hipoxia de la Célula , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Complejo III de Transporte de Electrones/metabolismo , Ratas , Ratas Sprague-Dawley
15.
J Appl Physiol (1985) ; 129(4): 810-822, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32758041

RESUMEN

We hypothesized that the performance of prior heavy exercise would speed pulmonary oxygen uptake (V̇o2) kinetics (i.e., as described by the time constant, [Formula: see text]) and reduce the amplitude of muscle deoxygenation (deoxy[heme]) kinetics in the supine (S) but not upright (U) body position. Seventeen healthy men completed heavy-intensity constant-work rate exercise tests in S and U consisting of two bouts of 6-min cycling separated by 6-min cycling at 20 W. Pulmonary V̇o2 was measured breath by breath; total and deoxy[heme] were determined via time-resolved near-infrared spectroscopy (NIRS) at three muscle sites. Priming exercise reduced [Formula: see text] in S (bout 1: 36 ± 10 vs. bout 2: 28 ± 10 s, P < 0.05) but not U (bout 1: 27 ± 8 s vs. bout 2: 25 ± 7 s, P > 0.05). Deoxy[heme] amplitude was increased after priming in S (bout 1: 25-28 µM vs. bout 2: 30-35 µM, P < 0.05) and U (bout 1: 13-18 µM vs. bout 2: 17-25 µM, P > 0.05), whereas baseline total[heme] was enhanced in S (bout 1: 110-179 µM vs. bout 2: 121-193 µM, P < 0.05) and U (bout 1: 123-186 µM vs. bout 2: 137-197 µM, P < 0.05). Priming exercise increased total[heme] in both S and U, likely indicating enhanced diffusive O2 delivery. However, the observation that after priming the amplitude of the deoxy[heme] response was increased in S suggests that the reduction in [Formula: see text] subsequent to priming was related to a combination of both enhanced intracellular O2 utilization and increased O2 delivery.NEW & NOTEWORTHY Here we show that oxygen uptake (V̇o2) kinetics are slower in the supine compared with upright body position, an effect that is associated with an increased amplitude of skeletal muscle deoxygenation in the supine position. After priming in the supine position, the amplitude of muscle deoxygenation remained markedly elevated above that observed during upright exercise. Hence, the priming effect cannot be solely attributed to enhanced O2 delivery, and enhancements to intracellular O2 utilization must also be contributory.


Asunto(s)
Consumo de Oxígeno , Oxígeno , Ejercicio Físico , Prueba de Esfuerzo , Humanos , Cinética , Masculino , Músculo Esquelético/metabolismo , Oxígeno/metabolismo , Intercambio Gaseoso Pulmonar
16.
J Sports Sci ; 38(21): 2462-2470, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32654597

RESUMEN

To establish the test-retest reliability of pulmonary oxygen uptake (V̇O2), muscle deoxygenation (deoxy[haem]) and tissue oxygen saturation (StO2) kinetics in youth elite-cyclists. From baseline pedalling, 15 youth cyclists completed 6-min step transitions to a moderate- and heavy-intensity work rate separated by 8 min of baseline cycling. The protocol was repeated after 1 h of passive rest. V̇O2 was measured breath-by-breath alongside deoxy[haem] and StO2 of the vastus lateralis by near-infrared spectroscopy. Reliability was assessed using 95% limits of agreement (LoA), the typical error (TE) and the intraclass correlation coefficient (ICC). During moderate- and heavy-intensity step cycling, TEs for the amplitude, time delay and time constant ranged between 3.5-21.9% and 3.9-12.1% for V̇O2 and between 6.6-13.7% and 3.5-10.4% for deoxy[haem], respectively. The 95% confidence interval for estimating the kinetic parameters significantly improved for ensemble-averaged transitions of V̇O2 (p < 0.01) but not for deoxy[haem]. For StO2, the TEs for the baseline, end-exercise and the rate of deoxygenation were 1.0-42.5% and 1.1-5.5% during moderate- and heavy-intensity exercise, respectively. The ICC ranged from 0.81 to 0.99 for all measures. Test-retest reliability data provide limits within which changes in V̇O2, deoxy[haem] and StO2 kinetics may be interpreted with confidence in youth athletes.


Asunto(s)
Consumo de Oxígeno , Ventilación Pulmonar , Músculo Cuádriceps/metabolismo , Carrera/fisiología , Adaptación Fisiológica , Adolescente , Femenino , Hemo/metabolismo , Humanos , Masculino , Microcirculación , Músculo Cuádriceps/irrigación sanguínea , Reproducibilidad de los Resultados , Espectroscopía Infrarroja Corta
17.
Sci Total Environ ; 705: 135985, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31841915

RESUMEN

Ultrasound technology has attracted increasing attention in the field of sewage sludge treatment. This study investigated the nitrite accumulation ratio (NAR) and microbial characteristics of the partial nitrification (PN) process in a sequencing batch reactor employing ultrasonic treatment (ultrasound density = 0.25 W/mL, irradiation time = 10 min). PN was achieved over 73 days with a NAR above 85% under ambient temperatures. A low dissolved oxygen (DO) environment was generated in the reactor by enhancing the oxygen utilization rate of ammonia-oxidizing bacteria (AOB). Additionally, the application of long-term ultrasonic treatment led to the enhancement of the dominance of the Nitrosomonas genus of AOB, while populations of the Nitrospira genus of nitrite-oxidizing bacteria (NOB) were eradicated. At the same time, the activities of the aerobic denitrifying bacteria Thauera, Terrimonas, Defluviimonas, and Thermomonas were enhanced and their relative abundance was increased. Overall, the results suggest that ultrasonic treatment can enhance AOB activity and generate a low DO environment that facilitates effective PN.


Asunto(s)
Nitrificación , Amoníaco , Reactores Biológicos , Nitritos , Oxidación-Reducción , Aguas del Alcantarillado , Aguas Residuales
18.
Exp Physiol ; 104(12): 1929-1941, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31512297

RESUMEN

NEW FINDINGS: What is the central question of this study? Do the phase II parameters of pulmonary oxygen uptake ( V̇O2 ) kinetics display linear, first-order behaviour in association with alterations in skeletal muscle oxygenation during step cycling of different intensities or when exercise is initiated from an elevated work rate in youths. What is the main finding and its importance? Both linear and non-linear features of phase II V̇O2 kinetics may be determined by alterations in the dynamic balance between microvascular O2 delivery and utilization in 11-15 year olds. The recruitment of higher-order (i.e. type II) muscle fibres during 'work-to-work' cycling might be responsible for modulating V̇O2 kinetics with chronological age. ABSTRACT: This study investigated in 19 male youths (mean age: 13.6 ± 1.1 years, range: 11.7-15.7 years) the relationship between pulmonary oxygen uptake ( V̇O2 ) and muscle deoxygenation kinetics during moderate- and very heavy-intensity 'step' cycling initiated from unloaded pedalling (i.e. U â†’ M and U â†’ VH) and moderate to very heavy-intensity step cycling (i.e. M â†’ VH). Pulmonary V̇O2 was measured breath-by-breath along with the tissue oxygenation index (TOI) of the vastus lateralis using near-infrared spectroscopy. There were no significant differences in the phase II time constant ( τV̇O2p ) between U â†’ M and U â†’ VH (23 ± 6 vs. 25 ± 7 s; P = 0.36); however, the τV̇O2p was slower during M â†’ VH (42 ± 16 s) compared to other conditions (P < 0.001). Quadriceps TOI decreased with a faster (P < 0.01) mean response time (MRT; i.e. time delay + τ) during U â†’ VH (14 ± 2 s) compared to U â†’ M (22 ± 4 s) and M â†’ VH (20 ± 6 s). The difference (Δ) between the τV̇O2p and MRT-TOI was greater during U â†’ VH compared to U â†’ M (12 ± 7 vs. 2 ± 7 s, P < 0.001) and during M â†’ VH (23 ± 15 s) compared to other conditions (P < 0.02), suggesting an increased proportional speeding of fractional O2 extraction. The slowing of the τV̇O2p during M â†’ VH relative to U â†’ M and U â†’ VH correlated positively with chronological age (r = 0.68 and 0.57, respectively, P < 0.01). In youths, 'work-to-work' transitions slowed microvascular O2 delivery-to-O2 utilization with alterations in phase II V̇O2 dynamics accentuated between the ages of 11 and 15 years.


Asunto(s)
Prueba de Esfuerzo/métodos , Músculo Esquelético/metabolismo , Consumo de Oxígeno/fisiología , Intercambio Gaseoso Pulmonar/fisiología , Ventilación Pulmonar/fisiología , Adolescente , Niño , Humanos , Masculino , Espectroscopía Infrarroja Corta/métodos
19.
Biomolecules ; 9(4)2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30934776

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder that exhibits aberrant protein aggregation and mitochondrial dysfunction. Ndi1, the yeast mitochondrial NADH dehydrogenase (complex I) enzyme, is a single subunit, internal matrix-facing protein. Previous studies have shown that Ndi1 expression leads to improved mitochondrial function in models of complex I-mediated mitochondrial dysfunction. The trans-mitochondrial cybrid cell model of PD was created by fusing mitochondrial DNA-depleted SH-SY5Y cells with platelets from a sporadic PD patient. PD cybrid cells reproduce the mitochondrial dysfunction observed in a patient's brain and periphery and form intracellular, cybrid Lewy bodies comparable to Lewy bodies in PD brain. To improve mitochondrial function and alter the formation of protein aggregates, Ndi1 was expressed in PD cybrid cells and parent SH-SY5Y cells. We observed a dramatic increase in mitochondrial respiration, increased mitochondrial gene expression, and increased PGC-1α gene expression in PD cybrid cells expressing Ndi1. Total cellular aggregated protein content was decreased but Ndi1 expression was insufficient to prevent cybrid Lewy body formation. Ndi1 expression leads to improved mitochondrial function and biogenesis signaling, both processes that could improve neuron survival during disease. However, other aspects of PD pathology such as cybrid Lewy body formation were not reduced. Consequently, resolution of mitochondrial dysfunction alone may not be sufficient to overcome other aspects of PD-related cellular pathology.


Asunto(s)
Técnicas de Cocultivo , Complejo I de Transporte de Electrón/genética , Mitocondrias/metabolismo , Modelos Biológicos , Enfermedad de Parkinson/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Línea Celular Tumoral , Complejo I de Transporte de Electrón/metabolismo , Humanos , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
J Appl Physiol (1985) ; 126(5): 1360-1376, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30844336

RESUMEN

Near infrared spectroscopy (NIRS) is a powerful noninvasive tool with which to study the matching of oxygen delivery to oxygen utilization and the number of new publications utilizing this technique has increased exponentially in the last 20 yr. By measuring the state of oxygenation of the primary heme compounds in skeletal muscle (hemoglobin and myoglobin), greater understanding of the underlying control mechanisms that couple perfusive and diffusive oxygen delivery to oxidative metabolism can be gained from the laboratory to the athletic field to the intensive care unit or emergency room. However, the field of NIRS has been complicated by the diversity of instrumentation, the inherent limitations of some of these technologies, the associated diversity of terminology, and a general lack of standardization of protocols. This Cores of Reproducibility in Physiology (CORP) will describe in basic but important detail the most common methodologies of NIRS, their strengths and limitations, and discuss some of the potential confounding factors that can affect the quality and reproducibility of NIRS data. Recommendations are provided to reduce the variability and errors in data collection, analysis, and interpretation. The goal of this CORP is to provide readers with a greater understanding of the methodology, limitations, and best practices so as to improve the reproducibility of NIRS research in skeletal muscle.


Asunto(s)
Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Ejercicio Físico/fisiología , Hemoglobinas/metabolismo , Humanos , Mioglobina/metabolismo , Oxígeno/metabolismo , Consumo de Oxígeno/fisiología , Reproducibilidad de los Resultados , Espectroscopía Infrarroja Corta/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA