Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biodegradation ; 35(2): 195-208, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37639168

RESUMEN

The copper industry utilizes significant amounts of sulfuric acid in its processes, generating sulfate as waste. While sulfate-reducing bacteria can remove sulfate, it produces hydrogen sulfide (H2S) as a byproduct. This study examined the capability of a consortium consisting of Sulfobacillus thermosulfidooxidans and Sulfobacillus acidophilus to partially oxidize H2S to S° at a temperature of 45 °C. A fixed-bed bioreactor, with glass rings as support material and sodium thiosulfate as a model electron donor, was inoculated with the consortium. Formation of biofilms was crucial to maintain the bioreactor's steady state, despite high flow rates. Afterward, the electron donor was changed to H2S. When the bioreactor was operated continuously and with high aeration, H2S was fully oxidized to SO42-. However, under conditions of low aeration and at a concentration of 0.26 g/L of H2S, the consortium was able to oxidize H2S to S° with a 13% yield. S° was discovered attached to the glass rings and jarosite. The results indicate that the consortium could oxidize H2S to S° with a 13% yield under low aeration and at a concentration of 0.26 g/L of H2S. The findings highlight the capability of a Sulfobacillus consortium to convert H2S into S°, providing a potential solution for addressing environmental and safety issues associated with sulfate waste generated by the mining industry.


Asunto(s)
Sulfuro de Hidrógeno , Sulfatos , Reactores Biológicos/microbiología , Azufre , Bacterias , Oxidación-Reducción
2.
Animals (Basel) ; 13(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38003068

RESUMEN

The aim of this study was to investigate the molecular mechanisms by which hypoxia affects the biological behavior of yak PASMCs, the changes in the histological structure of yak and cattle lungs, and the relationships and regulatory roles that exist regarding the differences in the distribution and expression of PDK1 and its hypoxia-associated factors screened for their role in the adaptation of yak lungs to the plateau hypoxic environment. The results showed that, at the level of transcriptome sequencing, the molecular regulatory mechanisms of the HIF-1 signaling pathway, glucose metabolism pathway, and related factors (HK2/PGK1/ENO1/ENO3/ALDOC/ALDOA) may be closely related to the adaptation of yaks to the hypoxic environment of the plateau; at the tissue level, the presence of filled alveoli and semi-filled alveoli, thicker alveolar septa and basement membranes, a large number of erythrocytes, capillary distribution, and collagen fibers accounted for all levels of fine bronchioles in the lungs of yaks as compared to cattle. A higher percentage of goblet cells was found in the fine bronchioles of yaks, and PDK1, HIF-1α, and VEGF were predominantly distributed and expressed in the monolayers of ciliated columnar epithelium in the branches of the terminal fine bronchioles of yak and cattle lungs, with a small amount of it distributed in the alveolar septa; at the molecular level, the differences in PDK1 mRNA relative expression in the lungs of adult yaks and cattle were not significant (p > 0.05), the differences in HIF-1α and VEGF mRNA relative expression were significant (p < 0.05), and the expression of PDK1 and HIF-1α proteins in adult yaks was stronger than that in adult cattle. PDK1 and HIF-1α proteins were more strongly expressed in adult yaks than in adult cattle, and the difference was highly significant (p < 0.01); the relative expression of VEGF proteins was not significantly different between adult yaks and cattle (p > 0.05). The possible regulatory relationship between the above results and the adaptation of yak lungs to the plateau hypoxic environment paves the way for the regulatory mechanisms of PDK1, HIF-1α, and VEGF, and provides basic information for studying the mechanism of hypoxic adaptation of yaks in the plateau. At the same time, it provides a reference for human hypoxia adaptation and a target for the prevention and treatment of plateau diseases in humans and plateau animals.

3.
BMC Anesthesiol ; 22(1): 335, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36324081

RESUMEN

BACKGROUND: Despite evidence that high-flow nasal cannula oxygen therapy (HFNC) promotes oxygenation, its application in sedated gastroscopy in elderly patients has received little attention. This study investigated the effect of different inhaled oxygen concentrations (FiO2) of HFNC during sedated gastroscopy in elderly patients. METHODS: In a prospective randomized single-blinded study, 369 outpatients undergoing regular gastroscopy with propofol sedation delivered by an anesthesiologist were randomly divided into three groups (n = 123): nasal cannula oxygen group (Group C), 100% FiO2 of HFNC group (Group H100), and 50% FiO2 of HFNC (Group H50). The primary endpoint in this study was the incidence of hypoxia events with pulse oxygen saturation (SpO2) ≤ 92%. The secondary endpoints included the incidence of other varying degrees of hypoxia and adverse events associated with ventilation and hypoxia. RESULTS: The incidence of hypoxia, paradoxical response, choking, jaw lift, and mask ventilation was lower in both Group H100 and Group H50 than in Group C (P < 0.05). Compared with Group H100, Group H50 showed no significant differences in the incidence of hypoxia, jaw lift and mask ventilation, paradoxical response, or choking (P > 0.05). No patients were mechanically ventilated with endotracheal intubation or found to have complications from HFNC. CONCLUSION: HFNC prevented hypoxia during gastroscopy with propofol in elderly patients, and there was no significant difference in the incidence of hypoxia when FiO2 was 50% or 100%. TRIAL REGISTRATION: This single-blind, prospective, randomized controlled trial was approved by the Ethics Committee of Nanjing First Hospital (KY20201102-04) and registered in the China Clinical Trial Center (20/10/2021, ChiCTR2100052144) before patients enrollment. All patients signed an informed consent form.


Asunto(s)
Obstrucción de las Vías Aéreas , Propofol , Insuficiencia Respiratoria , Humanos , Anciano , Cánula/efectos adversos , Propofol/efectos adversos , Gastroscopía/efectos adversos , Método Simple Ciego , Estudios Prospectivos , Terapia por Inhalación de Oxígeno , Oxígeno , Hipoxia/etiología , Hipoxia/prevención & control , Obstrucción de las Vías Aéreas/complicaciones , Insuficiencia Respiratoria/inducido químicamente
4.
Sci Total Environ ; 781: 146719, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-33812097

RESUMEN

This study aimed to understand the effect of different dissolved oxygen (DO) concentrations on the abundance and performance of nitrifying bacteria in full-scale wastewater treatment bioreactors, particularly during the winter when nitrifying bacterial activity is often negligible. Biomass samples were collected from three parallel full-scale bioreactors with low DO concentrations (<1.3 mg/ L) and from two full-scale bioreactors with higher DO concentrations (~4.0 and ~2.3 mg/ L). The relative abundance of nitrifying bacteria was determined by sequencing of PCR-amplified 16S rRNA gene fragments. In the three bioreactors with low DO concentrations, effluent ammonia concentrations sharply increased with a decline in temperature below approximately 17 °C, while the bioreactors with high DO concentrations showed stable nitrification regardless of temperature. Even with the decline in nitrification during the winter in the three low DO bioreactors, the relative abundance of ammonia oxidizing bacteria (mostly Nitrosomonas spp.) was curiously maintained. The relative abundance of nitrite oxidizing bacteria was similarly maintained, although there were substantial seasonal fluctuations in the relative abundance values of Nitrospira spp. versus Nitrotoga spp. This research suggests that nitrification activity can be controlled during the winter via DO to produce better effluent quality with high DO concentrations or to reduce aeration costs with a concomitant decline in nitrification activity.


Asunto(s)
Reactores Biológicos , Purificación del Agua , Amoníaco , Bacterias/genética , Nitrificación , Nitritos , Oxidación-Reducción , Oxígeno , ARN Ribosómico 16S/genética , Tiempo (Meteorología)
5.
Zygote ; 28(6): 459-469, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32772955

RESUMEN

Oxygen concentration influences oocyte quality and subsequent embryo development, but it remains unclear whether oxygen concentrations affect the developmental competence and transcriptomic profile of yak oocytes. In this study, we investigated the effects of different oxygen concentrations (5% versus 20%) on the developmental competence, reactive oxygen species (ROS) levels, glutathione (GSH) content, and transcriptomic profile of yak oocytes. The results showed that a low oxygen concentration significantly increased the maturation rate of yak oocytes (81.2 ± 2.2% vs 75.9 ± 1.3%) and the blastocyst quality of yak in vitro fertilized embryos. Analysis of ROS and GSH showed that a low oxygen concentration reduced ROS levels and increased the content of GSH (75.05 ± 7.1 ng/oocyte vs 50.63 ± 5.6 ng/oocyte). Furthermore, transcriptomic analysis identified 120 differentially expressed genes (DEGs) between the two groups of oocytes. Gene enrichment analysis of the DEGs indicated multiple cellular processes, including oxidative phosphorylation, transcription regulation, mitochondrial regulation, oestrogen signalling pathway, HIF-1 signalling pathway, TNF signalling pathway, were involved in the response to oxygen concentration alterations. Taken together, these results indicated that a low oxygen concentration improved the developmental competence of yak oocytes.


Asunto(s)
Oocitos , Transcriptoma , Animales , Blastocisto , Bovinos , Desarrollo Embrionario , Fertilización In Vitro , Técnicas de Maduración In Vitro de los Oocitos , Oxígeno , Especies Reactivas de Oxígeno
6.
Reprod Biol ; 20(2): 147-153, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32317160

RESUMEN

After in vivo fertilisation, the preimplantation embryo goes through cleavage during migration along the oviduct in mammals or the fallopian tube in a woman and ends up inside the uterus. This study investigates the effect of a protocol aimed at closely reproducing that natural oxygen concentration in the oviduct (7 % O2 from day 1 to day 3 and 2 % from day 3 to day 5), in contrast to the concentrations (5 % or 20 %) widely used in practice in ART using morphokinetic. Female mice (BI6/CBAca) were sacrificed, and zygotes were isolated 20 h after mating and randomly allocated to three parallel groups, which were grown under high atmospheric, low, or sequential oxygen concentrations. Zygotes were cultured in GTL medium (Vitrolife) and observed by the Primovision time-lapse system. Blastocyst rate at 120 h in the sequential group (91.3 %) was significantly increased over the high (76.3 %) and low (74.4 %) groups. Blastocyst size was also enlarged in the sequential group compared to the high and low groups. Moreover, cell division in the sequential group was significantly faster at almost every cleavage stage than it was in the other groups. Notably, the duration of the interims between stages also differed significantly between the groups. This study demonstrated that, in comparison to routinely used high or low oxygen conditions, oxygen concentrations mimicking changes in the oviduct and uterus significantly improve the blastocyst rate and size and accelerate cell division at several stages as well as the interims between cleavage events.


Asunto(s)
Blastocisto/efectos de los fármacos , División Celular/fisiología , Desarrollo Embrionario/efectos de los fármacos , Trompas Uterinas/fisiología , Oxígeno/administración & dosificación , Útero/fisiología , Animales , Blastocisto/citología , Blastocisto/fisiología , División Celular/efectos de los fármacos , Fase de Segmentación del Huevo/efectos de los fármacos , Fase de Segmentación del Huevo/fisiología , Técnicas de Cultivo de Embriones , Desarrollo Embrionario/fisiología , Femenino , Hibridación Genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Técnicas Reproductivas Asistidas
7.
Micromachines (Basel) ; 9(3)2018 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30424028

RESUMEN

Microfluidic devices have been widely used for biological and cellular studies. Microbioreactors for three-dimensional (3D) multicellular spheroid culture are now considered as the next generation in in vitro diagnostic tools. The feasibility of using 3D cell aggregates to form multicellular spheroids in a microbioreactor with U-shaped barriers has been demonstrated experimentally. A barrier array is an alternative to commonly used microwell traps. The present study investigates oxygen and glucose concentration distributions as key parameters in a U-shaped array microbioreactor using finite element simulation. The effect of spheroid diameter, inlet concentration and flow rate of the medium are systematically studied. In all cases, the channel walls are considered to be permeable to oxygen. Necrotic and hypoxic or quiescent regions corresponding to both oxygen and glucose concentration distributions are identified for various conditions. The results show that the entire quiescent and necrotic regions become larger with increasing spheroid diameter and decreasing inlet and wall concentration. The shear stress (0.5⁻9 mPa) imposed on the spheroid surface by the fluid flow was compared with the critical values to predict possible damage to the cells. Finally, optimum range of medium inlet concentration (0.13⁻0.2 mM for oxygen and 3⁻11 mM for glucose) and flow rate (5⁻20 µL/min) are found to form the largest possible multicellular spheroid (500 µm), without any quiescent and necrotic regions with an acceptable shear stress. The effect of cell-trap types on the oxygen and glucose concentration inside the spheroid was also investigated. The levels of oxygen and glucose concentration for the microwell are much lower than those for the other two traps. The U-shaped barrier created with microposts allows for a continuous flow of culture medium, and so improves the glucose concentration compared to that in the integrated U-shaped barrier. Oxygen concentration for both types of U-shaped barriers is nearly the same. Due to the advantage of using U-shaped barriers to culture multicellular spheroids, the results of this paper can help to choose the experimental and design parameters of the microbioreactor.

8.
J Cell Physiol ; 233(1): 338-349, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28247929

RESUMEN

Hematopoietic stem cells (HSCs), which are located in the bone marrow, also circulate in cord and peripheral blood. Despite high availability, HSCs from steady state peripheral blood (SSPB) are little known and not used for research or cell therapy. We thus aimed to characterize and select HSCs from SSPB by a direct approach with a view to delineating their main functional and metabolic properties and the mechanisms responsible for their maintenance. We chose to work on Side Population (SP) cells which are highly enriched in HSCs in mouse, human bone marrow, and cord blood. However, no SP cells from SSBP have as yet been characterized. Here we showed that SP cells from SSPB exhibited a higher proliferative capacity and generated more clonogenic progenitors than non-SP cells in vitro. Furthermore, xenotransplantation studies on immunodeficient mice demonstrated that SP cells are up to 45 times more enriched in cells with engraftment capacity than non-SP cells. From a cell regulation point of view, we showed that SP activity depended on O2 concentrations close to those found in HSC niches, an effect which is dependent on both hypoxia-induced factors HIF-1α and HIF-2α. Moreover SP cells displayed a reduced mitochondrial mass and, in particular, a lower mitochondrial activity compared to non-SP cells, while they exhibited a similar level of glucose incorporation. These results provided evidence that SP cells from SSPB displayed properties of very primitive cells and HSC, thus rendering them an interesting model for research and cell therapy.


Asunto(s)
Células Sanguíneas/metabolismo , Metabolismo Energético , Células Madre Hematopoyéticas/metabolismo , Células de Población Lateral/metabolismo , Animales , Antígenos CD34/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores/metabolismo , Células Sanguíneas/trasplante , Hipoxia de la Célula , Proliferación Celular , Células Cultivadas , Femenino , Sangre Fetal/citología , Glucosa/metabolismo , Trasplante de Células Madre Hematopoyéticas , Xenoinjertos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Mitocondrias/metabolismo , Fenotipo , Interferencia de ARN , Células de Población Lateral/trasplante , Transfección
9.
J Hazard Mater ; 341: 159-167, 2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-28777961

RESUMEN

Layered metal dichalcogenides (LMDs) semiconducting materials have recently attracted tremendous attention as high performance gas sensors due to unique chemical and physical properties of thin layers. Here, three-dimensional SnS2 nanoflower structures assembled with thin nanosheets were synthesized via a facile solvothermal process. When applied to detect 100ppm NH3 at 200°C, the SnS2 based sensor exhibited high response value of 7.4, short response/recovery time of 40.6s/624s. Moreover, the sensor demonstrated a low detection limit of 0.5ppm NH3 and superb selectivity to NH3 against CO2, CH4, H2, ethanol and acetone. The excellent performance is attributed to the unique thin layers assembled flower-like nanoarchitecture, which facilitates both the carrier charge transfer process and the adsorption/desorption reaction. More importantly, it was found that the sensor response enhanced with increasing oxygen content in background and was improved by 3.57 times with oxygen content increasing from 0 to 40%. The increased response is owing to the enhanced binding energies between SnS2 and NH3 moleculers. Theoretically, density functional theory was employed to reveal the NH3 adsorption mechanism in different background oxygen contents, which opens a new horizon for LMD based structures applied in various gas sensing fields.

10.
Rom J Anaesth Intensive Care ; 24(1): 53-56, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28913499

RESUMEN

Oxygen is an element, which is used liberally during several medical procedures. The use of oxygen during perioperative care is a controversial issue. Anesthesiologists use oxygen to prevent hypoxemia during surgical procedures, but the effects of its liberal use can be harmful. Another argument for using high oxygen concentrations is to prevent surgical site infections by increasing oxygen levels at the incision site. Although inconclusive, literature concerning the use of high oxygen concentrations during anesthesia show that this approach may cause hemodynamic changes, altered microcirculation and increased oxidative stress. In intensive care it has been shown that high oxygen concentrations may be associated with increased mortality in certain patient populations such as post cardiac arrest patients. In this paper, a review of literature had been undertaken to warn anesthesiologists about the potential harmful effects of high oxygen concentrations.

11.
Front Physiol ; 8: 539, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28798696

RESUMEN

As animals evolved to use oxygen as the main strategy to produce ATP through the process of mitochondrial oxidative phosphorylation, the ability to adapt to fluctuating oxygen concentrations is a crucial component of evolutionary pressure. Three mitophagy receptors, FUNDC1, BNIP3 and NIX, induce the removal of dysfunctional mitochondria (mitophagy) under prolonged hypoxic conditions in mammalian cells, to maintain oxygen homeostasis and prevent cell death. However, the evolutionary origins and structure-function relationships of these receptors remain poorly understood. Here, we found that FUN14 domain-containing proteins are present in archaeal, bacterial and eukaryotic genomes, while the family of BNIP3 domain-containing proteins evolved from early animals. We investigated conservation patterns of the critical amino acid residues of the human mitophagy receptors. These residues are involved in receptor regulation, mainly through phosphorylation, and in interaction with LC3 on the phagophore. Whereas FUNDC1 may be able to bind to LC3 under the control of post-translational regulations during the early evolution of vertebrates, BINP3 and NIX had already gained the ability for LC3 binding in early invertebrates. Moreover, FUNDC1 and BNIP3 each lack a layer of phosphorylation regulation in fishes that is conserved in land vertebrates. Molecular evolutionary analysis revealed that BNIP3 and NIX, as the targets of oxygen sensing HIF-1α, showed higher rates of substitution in fishes than in mammals. Conversely, FUNDC1 and its regulator MARCH5 showed higher rates of substitution in mammals. Thus, we postulate that the structural traces of mitophagy receptors in land vertebrates and fishes may reflect the process of vertebrate transition from water onto land, during which the changes in atmospheric oxygen concentrations acted as a selection force in vertebrate evolution. In conclusion, our study, combined with previous experimental results, shows that hypoxia-induced mitophagy regulated by FUDNC1/MARCH5 might use a different mechanism from the HIF-1α-dependent mitophagy regulated by BNIP3/NIX.

12.
Proc Biol Sci ; 283(1836)2016 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-27512146

RESUMEN

Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral-algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at the coral-algal interface vary with algal competitors and competitiveness. Using field observations and microsensor measurements in a flow chamber, we show that coral (massive Porites) interfaces with thick turf algae, macroalgae, and cyanobacteria, which are successful competitors against coral in the field, are characterized by a thick DBL and hypoxia at night. In contrast, coral interfaces with crustose coralline algae, conspecifics, and thin turf algae, which are poorer competitors, have a thin DBL and low hypoxia at night. Furthermore, DBL thickness and hypoxia at the interface with turf decreased with increasing flow speed, but not when thick turf was upstream. Our results support the importance of water-mediated transport mechanisms in coral-algal interactions. Shifts towards algal dominance, particularly dense assemblages, may lead to thicker DBLs, higher hypoxia, and higher concentrations of harmful metabolites and pathogens along coral borders, which in turn may facilitate algal overgrowth of live corals. These effects may be mediated by flow speed and orientation.


Asunto(s)
Antozoos/fisiología , Cianobacterias/fisiología , Agua de Mar/química , Algas Marinas/fisiología , Animales , Arrecifes de Coral , Hipoxia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA