Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 41(2): 599-610, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34889705

RESUMEN

The oxovanadium(IV) Schiff base metal complex (ISNPV) have been synthesized as well as characterized by using micro analytical and traditional spectroscopic techniques. The spectral findings were utilized to validate the formation of ISNPV with structure exhibited square pyramidal geometry. The in vitro antibacterial activities of ISNPV were investigated to five different bacterial stains such as S. aureus, S. epidermidis, B. cereus, B. amyloliquefaciens and B. subtilis. The obtained result have suggested that the ISNPV has highest antibacterial activity against S. aureus than the other bacterial stains. The in vitro antioxidant activity like DPPH free radical scavenging assay method was studied by ISNPV in DMSO medium. Because it scavenges all free radicals, the ISNPV possesses higher antioxidant activity than the free ligand. UV-visible absorption and emission spectral techniques were used to investigate the binding of CT-DNA to the ISNPV. Both the spectral data indicate that the ISNPV binds the double helix structure of CT-DNA via an intercalation mode. Additionally, investigate the interactions of ISNPV with the protein molecules like BSA/HAS has been investigated using absorption and emission techniques. The absorption intensity of metal complex increases as well as the emission intensity of protein molecules ability decreases due to the binding nature of ISNPV with BSA/HSA protein molecules. The binding nature of ISNPV with bio molecules such as CT-DNA, BSA and HSA was also validated using molecular docking approach.


Asunto(s)
Antioxidantes , Complejos de Coordinación , Antioxidantes/farmacología , Antioxidantes/química , Simulación del Acoplamiento Molecular , Bases de Schiff/farmacología , Bases de Schiff/química , Staphylococcus aureus , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Antibacterianos/farmacología , Antibacterianos/química , ADN/química , Bacterias/metabolismo , Ligandos
2.
Materials (Basel) ; 14(24)2021 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-34947266

RESUMEN

So far, few microclusters containing vanadium have been described in the literature. In this report, the synthesis protocol for the preparation of oxovanadium (IV) microclusters with 2-phenylpyridine is shown for the first time. Moreover, the crystal structure of these microclusters is also studied through the use of X-rays. The morphology of the prepared crystals is investigated using a field-emission Scanning Electron Microscope (SEM). The new compound, after activation by modified methylaluminoxane as the catalytic system, is investigated regarding the oligomerizations of 3-buten-1-ol, 2-chloro-2-propen-1-ol, allyl alcohol, and 2,3-dibromo-2-propen-1-ol. The products of oligomerization are tested by the TG-FTIR and MALDI-TOF-MS methods. Moreover, the values of catalytic activities for the new oxovanadium(IV) microclusters with 2-phenylpyridine are determined for the 3-buten-1-ol, 2-chloro-2-propen-1-ol, allyl alcohol, and 2,3-dibromo-2-propen-1-ol oligomerizations. Oxovanadium(IV) microclusters with 2-phenylpyridine are shown to be very highly active precatalysts for the oligomerization of allyl alcohol, 2,3-dibromo-2-propen-1-ol, and 3-buten-1-ol. However, in the case of 2-chloro-2-propen-1-ol oligomerization, the new microclusters are seen as highly active precatalysts.

3.
Toxicol Mech Methods ; 31(8): 581-588, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34240667

RESUMEN

Diabetes mellitus (DM) is chronic and metabolic disorder, which is mainly attributed by hyperglycemia. Vanadium salts and their oxo-complexes have been shown to possess insulin-mimetic and anti-diabetic activities in animal models and diabetic patients. The main goal of this study was to investigate the protective effect of oxovanadium(IV) complex based on thiosemicarbazone (VOL) [L: (N(1)-2,4-dihydroxybenzylidene-N-(4)-2-hydroxybenzylidene-S-methyl-isothiosemicarbazidato-oxovanadium(IV)] on glycoprotein components levels and oxidative lung injury of streptozotocin (STZ)-induced diabetic rats. Male Swiss albino rats were separated into four groups. Group I (n = 5): Control (normal) animals, Group II (n = 5): Control animals administered with VOL, Group III (n = 6): STZ-induced diabetic animals, and Group IV (n = 5): STZ-induced diabetic rats treated with VOL. VOL was given to the experimental animals by gavage at a dose of 0.2 mM/kg body weight every day for 12 days. Diabetes was induced by single intraperitoneal injection of STZ (65 mg/kg body weight). On the 12th day, lung tissue samples were taken. Glycoprotein components, advanced oxidation protein products, protein carbonyl, hydroxyproline levels, and prolidase, arginase, xanthine oxidase, catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase and adenosine deaminase activities significantly increased whereas aryl esterase, paraoxonase-1, carbonic anhydrase, Na+/K+-ATPase activities remarkably decreased in lung tissue of diabetic rats. Treatment with VOL reversed these effects showing a beneficial effect. The present study shows that VOL has a protective effect against diabetes-induced lung damage as well as on abnormal glycoprotein component levels.


Asunto(s)
Diabetes Mellitus Experimental , Lesión Pulmonar , Tiosemicarbazonas , Animales , Antioxidantes , Glucemia , Diabetes Mellitus Experimental/tratamiento farmacológico , Glicoproteínas , Humanos , Pulmón , Masculino , Estrés Oxidativo , Ratas , Tiosemicarbazonas/uso terapéutico
4.
Artículo en Inglés | MEDLINE | ID: mdl-25813179

RESUMEN

The tetradentate Schiff base ligands (L(1)-L(4)), were synthesized by reaction between 2-amino-3,5-dibromobenzaldehyde and aliphatic diamines. Then, nickel and oxovanadium(IV) complexes of these ligands were synthesized and characterized by (1)H NMR, Mass, IR, UV-Vis spectroscopy and thermogravimetry. The kinetic parameters of oxovanadium(IV) complexes were calculated from thermal studies. According to the results of thermogravimetric data, the thermal stability of oxovanadium(IV) complexes is as follow: [Formula: see text].


Asunto(s)
Benzaldehídos , Diaminas , Vanadatos , Benzaldehídos/síntesis química , Benzaldehídos/química , Diaminas/síntesis química , Diaminas/química , Estructura Molecular , Bases de Schiff/síntesis química , Bases de Schiff/química , Vanadatos/síntesis química , Vanadatos/química
5.
Chem Biol Interact ; 206(2): 289-301, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24125835

RESUMEN

It is known that flavonoids possess, among others, antioxidant and antitumoral properties that depend on their molecular structure. The central objective if this study was to investigate the potential antioxidant and antiproliferative properties of the flavonol morin and its new oxovanadium(IV) complex (VOmor) that was synthesized in order to modify the morin chemical structure. Two osteoblast (UMR106 and MC3T3E1), two breast tumor (T47D and SKBR3) and breast epithelial cell lines in culture were used for the antitumoral determinations. Additionally, a comparative study of their antioxidant capacities using different radicals (DPPH, ABTS(+), OH, O2(-), ROO) was performed. Selected mechanisms of action were studied using the breast cancer cell lines. Results obtained show that morin and its complex behaved as good antioxidant agents for some of the radicals and that the complexation improved the behavior with respect to OH and O2(-) radicals being morin more effective as ROO scavenger. A considerable variation in sensitivity was observed in the breast cancer cells but non-specificity was found for the treatment of osteosarcoma. Moreover, the compounds did not affect the normal proliferation of the breast epithelial mammal cells. The mechanistic studies demonstrated that the complex did not generate reactive oxygen species in the cells (confirming the in vitro studies) and did not produce any damage of DNA. The plasmatic membrane was observed to be damaged only in the SKBR3 cell line. In contrast, the perturbation of the mitochondrial membrane potential and the activation of caspase 3/7 for the breast tumor cells revealed an apoptotic cell death process. All these results collectively suggested that VOmor complex could serve as promising pharmacologically active substance against breast cancer treatment.


Asunto(s)
Antineoplásicos/química , Antioxidantes/química , Complejos de Coordinación/química , Flavonoides/química , Vanadio/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/toxicidad , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Ratones , Ratas , Especies Reactivas de Oxígeno/metabolismo
6.
Mater Sci Eng C Mater Biol Appl ; 33(7): 4081-5, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23910317

RESUMEN

The preparation and electrochemical characterization of a carbon paste electrode modified with the N,N-ethylene-bis(salicyllideneiminato)oxovanadium (IV) complex ([VO(salen)]) as well as its application for ranitidine determination are described. The electrochemical behavior of the modified electrode for the electroreduction of ranitidine was investigated using cyclic voltammetry, and analytical curves were obtained for ranitidine using linear sweep voltammetry (LSV) under optimized conditions. The best voltammetric response was obtained for an electrode composition of 20% (m/m) [VO(salen)] in the paste, 0.10 mol L(-1) of KCl solution (pH 5.5 adjusted with HCl) as supporting electrolyte and scan rate of 25 mV s(-1). A sensitive linear voltammetric response for ranitidine was obtained in the concentration range from 9.9×10(-5) to 1.0×10(-3) mol L(-1), with a detection limit of 6.6×10(-5) mol L(-1) using linear sweep voltammetry. These results demonstrated the viability of this modified electrode as a sensor for determination, quality control and routine analysis of ranitidine in pharmaceutical formulations.


Asunto(s)
Carbono/química , Electroquímica/instrumentación , Electroquímica/métodos , Etilenodiaminas/química , Ranitidina/análisis , Vanadatos/química , Electrodos , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Preparaciones Farmacéuticas/análisis , Ranitidina/química , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA