Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Mater Today Bio ; 28: 101220, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39290464

RESUMEN

Ovarian cancer (OC) is one of the leading causes of death from malignancy in women and lacks safe and efficient treatment. The novel biomaterial, recombinant humanized collagen type III (rhCOLIII), has been reported to have various biological functions, but its role in OC is unclear. This study aimed to reveal the function and mechanism of action of rhCOLIII in OC. We developed an injectable recombinant human collagen (rhCOL)-derived material with a molecular weight of 45 kDa, with a stable triple helix structure, high biocompatibility, water solubility and biosafety. The anti-tumor activity of rhCOLIII was comprehensively evaluated through in vitro and in vivo experiments. In vitro, our results showed that rhCOLIII inhibited the proliferation, migration, and invasion of ovarian cancer cells (OCCs), and induced apoptosis. In addition, rhCOLIII not only inhibited autophagy of OCCs but also increased the expression of MHC-1 molecule within OCCs. To further elucidate the mechanism of rhCOLIII in OC, we conducted joint analysis of RNA-Seq and proteomics, and found that rhCOLIII exerted anti-tumor function and autophagy inhibition by downregulating Glutathione S-transferase P1 (GSTP1). Furthermore, various rescue experiments were designed to demonstrate that rhCOLIII suppressed autophagy and proliferation of OCCs by mediating GSTP1. In vivo, we found that rhCOLIII could inhibit tumor growth and promote CD8+ T cell infiltration. Our results indicate that rhCOLIII has great anti-tumor potential activity in OC, and induces protective anti-tumor immunity by regulating autophagy through GSTP1. These findings illustrate the potential therapeutic prospects of rhCOLIII for OC treatment.

2.
Int Immunopharmacol ; 141: 112964, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39168025

RESUMEN

Curcumin (CUR) exhibits potential inhibitory effects on tumor growth; however, its hydrophobicity and instability limit its clinical applications. In the present study, we developed CUR nanoparticles (CUR-NPs) and evaluated their biochemical characteristics. Cell uptake and proliferation were assessed using scratch and Transwell assays, respectively. Western blotting was performed to investigate the expression levels of proteins related to the NF-κB/PRL-3 signaling pathway, inflammatory response, cell proliferation, and cell migration in SKOV3 cells. Our findings showed that the blank vector was not cytotoxic to cells, allowing us to disregard any effects caused by the vector itself. CUR-NPs exhibited concentration- and time-dependent inhibitory effects on cell proliferation, surpassing those of CUR alone. Increasing the concentration of CUR-NPs resulted in a reduced cell scratch-healing ability and lower chamber migration capacity. Compared to the control group, expression levels of proteins associated with NF-κB/PRL-3 signaling pathway, inflammatory response (TNF-α and IL-6), cell proliferation (cyclin E1 and cyclin A1), as well as cell migration (N-cadherin and vimentin) were significantly elevated in the lipopolysaccharide (LPS) stimulation and NF-κB p65 overexpression groups. Conversely, E-cadherin expression was significantly decreased under these conditions. However, treatment with high concentrations of CUR-NPs effectively reversed these changes. These results highlight the significant ability of CUR-NPs to inhibit human ovarian cancer cell proliferation and migration, while suppressing inflammatory responses through the regulation of the NF-κB/PRL-3 signaling pathway.


Asunto(s)
Movimiento Celular , Proliferación Celular , Curcumina , FN-kappa B , Nanopartículas , Neoplasias Ováricas , Transducción de Señal , Humanos , Curcumina/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Proteínas de Neoplasias/metabolismo
3.
Steroids ; 211: 109488, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39151767

RESUMEN

Several studies have indicated that 1α,25-hydroxyvitamin D [1α,25(OH)2D3] inhibits the proliferation and metastasis of cancer cells through suppressing epithelial-mesenchymal transition. However, its influence on the translocation of ß-catenin remains unclear. In the present study, ovarian cancer stem-like cells (CSCs), including side population (SP) and CD44+/CD117+, were isolated from mouse ovarian surface epithelial (MOSE) cells with malignant transformation. The findings revealed that 1α,25(OH)2D3 obviously reduced the sphere-forming ability, as well as Notch1 and Klf levels. Moreover, the limiting dilution assay demonstrated that 1α,25(OH)2D3 effectively hindered the tumorigenesis of ovarian CSCs in vitro. Notably, treatment with 1α,25(OH)2D3 led to a substantial increase in the cell population of CD44+/CD117+ forming one tumor from ≤ 100 to 445 in orthotopic transplanted model, indicating a pronounced suppression of stemness of ovarian CSCs. Additionally, 1α,25(OH)2D3 robustly promoted the translocation of ß-catenin from the nuclear to the cytoplasm through directly binding to VDR, which resulted in decreased levels of c-Myc and CyclinD1 within late MOSE cells. Taken together, these results strongly supported the role of 1α,25(OH)2D3 in inhibiting stem-like properties in ovarian cancer cells by restraining nuclear translocation of ß-catenin, thereby offering a promising target for cancer therapeutics.


Asunto(s)
Núcleo Celular , Células Madre Neoplásicas , Neoplasias Ováricas , Receptores de Calcitriol , Vitamina D , beta Catenina , Femenino , beta Catenina/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/tratamiento farmacológico , Receptores de Calcitriol/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Animales , Ratones , Vitamina D/análogos & derivados , Vitamina D/farmacología , Vitamina D/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Humanos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos
4.
Nutrients ; 16(12)2024 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-38931171

RESUMEN

Taurine, a non-proteogenic amino acid and commonly used nutritional supplement, can protect various tissues from degeneration associated with the action of the DNA-damaging chemotherapeutic agent cisplatin. Whether and how taurine protects human ovarian cancer (OC) cells from DNA damage caused by cisplatin is not well understood. We found that OC ascites-derived cells contained significantly more intracellular taurine than cell culture-modeled OC. In culture, elevation of intracellular taurine concentration to OC ascites-cell-associated levels suppressed proliferation of various OC cell lines and patient-derived organoids, reduced glycolysis, and induced cell protection from cisplatin. Taurine cell protection was associated with decreased DNA damage in response to cisplatin. A combination of RNA sequencing, reverse-phase protein arrays, live-cell microscopy, flow cytometry, and biochemical validation experiments provided evidence for taurine-mediated induction of mutant or wild-type p53 binding to DNA, activation of p53 effectors involved in negative regulation of the cell cycle (p21), and glycolysis (TIGAR). Paradoxically, taurine's suppression of cell proliferation was associated with activation of pro-mitogenic signal transduction including ERK, mTOR, and increased mRNA expression of major DNA damage-sensing molecules such as DNAPK, ATM and ATR. While inhibition of ERK or p53 did not interfere with taurine's ability to protect cells from cisplatin, suppression of mTOR with Torin2, a clinically relevant inhibitor that also targets DNAPK and ATM/ATR, broke taurine's cell protection. Our studies implicate that elevation of intracellular taurine could suppress cell growth and metabolism, and activate cell protective mechanisms involving mTOR and DNA damage-sensing signal transduction.


Asunto(s)
Cisplatino , Daño del ADN , Neoplasias Ováricas , Serina-Treonina Quinasas TOR , Taurina , Proteína p53 Supresora de Tumor , Taurina/farmacología , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Femenino , Neoplasias Ováricas/metabolismo , Daño del ADN/efectos de los fármacos , Cisplatino/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Glucólisis/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Antineoplásicos/farmacología
5.
Toxicol Appl Pharmacol ; 489: 116993, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38870637

RESUMEN

We tested the effect of substituents at the (1) C3´, C3´N, (2) C10, and (3) C2-meta-benzoate positions of taxane derivatives on their activity against sensitive versus counterpart paclitaxel-resistant breast (MCF-7) and ovarian (SK-OV-3) cancer cells. We found that (1) non-aromatic groups at both C3´ and C3´N positions, when compared with phenyl groups at the same positions of a taxane derivative, significantly reduced the resistance of ABCB1 expressing MCF-7/PacR and SK-OV-3/PacR cancer cells. This is, at least in the case of the SB-T-1216 series, accompanied by an ineffective decrease of intracellular levels in MCF-7/PacR cells. The low binding affinity of SB-T-1216 in the ABCB1 binding cavity can elucidate these effects. (2) Cyclopropanecarbonyl group at the C10 position, when compared with the H atom, seems to increase the potency and capability of the derivative in overcoming paclitaxel resistance in both models. (3) Derivatives with fluorine and methyl substituents at the C2-meta-benzoate position were variously potent against sensitive and resistant cancer cells. All C2 derivatives were less capable of overcoming acquired resistance to paclitaxel in vitro than non-substituted analogs. Notably, fluorine derivatives SB-T-121205 and 121,206 were more potent against sensitive and resistant SK-OV-3 cells, and derivatives SB-T-121405 and 121,406 were more potent against sensitive and resistant MCF-7 cells. (4) The various structure-activity relationships of SB-T derivatives observed in two cell line models known to express ABCB1 favor their complex interaction not based solely on ABCB1.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Resistencia a Antineoplásicos , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Células MCF-7 , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Relación Estructura-Actividad , Taxoides/farmacología , Taxoides/química , Línea Celular Tumoral , Paclitaxel/farmacología , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Benzoatos/farmacología , Benzoatos/química , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología
6.
Front Immunol ; 15: 1346686, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38333210

RESUMEN

The tryptophan-degrading enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is a plastic immune checkpoint molecule that potently orchestrates immune responses within the tumor microenvironment (TME). As a heme-containing protein, IDO1 catalyzes the conversion of the essential amino acid tryptophan into immunoactive metabolites, called kynurenines. By depleting tryptophan and enriching the TME with kynurenines, IDO1 catalytic activity shapes an immunosuppressive TME. Accordingly, the inducible or constitutive IDO1 expression in cancer correlates with a negative prognosis for patients, representing one of the critical tumor-escape mechanisms. However, clinically trialed IDO1 catalytic inhibitors disappointed the expected anti-tumor efficacy. Interestingly, the non-enzymatic apo-form of IDO1 is still active as a transducing protein, capable of promoting an immunoregulatory phenotype in dendritic cells (DCs) as well as a pro-tumorigenic behavior in murine melanoma. Moreover, the IDO1 catalytic inhibitor epacadostat can induce a tolerogenic phenotype in plasmacytoid DCs, overcoming the catalytic inhibition of IDO1. Based on this recent evidence, IDO1 plasticity was investigated in the human ovarian cancer cell line, SKOV-3, that constitutively expresses IDO1 in a dynamic balance between the holo- and apo-protein, and thus potentially endowed with a dual function (i.e., enzymatic and non-enzymatic). Besides inhibiting the catalytic activity, epacadostat persistently stabilizes the apo-form of IDO1 protein, favoring its tyrosine-phosphorylation and promoting its association with the phosphatase SHP-2. In SKOV-3 cells, both these early molecular events activate a signaling pathway transduced by IDO1 apo-protein, which is independent of its catalytic activity and contributes to the tumorigenic phenotype of SKOV-3 cells. Overall, our findings unveiled a new mechanism of action of epacadostat on IDO1 target, repositioning the catalytic inhibitor as a stabilizer of the apo-form of IDO1, still capable of transducing a pro-tumorigenic pathway in SKOV-3 tumor. This mechanism could contribute to clarify the lack of effectiveness of epacadostat in clinical trials and shed light on innovative immunotherapeutic strategies to tackle IDO1 target.


Asunto(s)
Neoplasias Ováricas , Oximas , Triptófano , Femenino , Humanos , Animales , Ratones , Triptófano/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Quinurenina/metabolismo , Sulfonamidas , Inhibidores Enzimáticos/farmacología , Carcinogénesis , Microambiente Tumoral
7.
Methods ; 222: 10-18, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154527

RESUMEN

ß-Galactosidase serves as a pivotal biomarker for both cancer and cellular aging. The advancement of fluorescent sensors for tracking ß-galactosidase activity is imperative in the realm of cancer diagnosis. We have designed a near-infrared fluorescent probe (PTA-gal) for the detection of ß-galactosidase in living systems with large Stokes shifts. PTA-gal exhibits remarkable sensitivity and selectivity in detecting ß-galactosidase, producing near-infrared fluorescent signals with a remarkably low detection limit (2.2 × 10-5 U/mL) and a high quantum yield (0.30). Moreover, PTA-gal demonstrates biocompatibility and can effectively detect ß-galactosidase in cancer cells as well as within living animals.


Asunto(s)
Colorantes Fluorescentes , Imagen Óptica , Animales , beta-Galactosidasa
8.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37958844

RESUMEN

Mesenchymal stem cells (MSCs) and their derivatives can be promising tools in oncology including ovarian cancer treatment. This study aimed to determine the effect of HATMSC2-MVs (microvesicles derived from human immortalized mesenchymal stem cells of adipose tissue origin) on the fate and behavior of primary ovarian cancer cells. Human primary ovarian cancer (OvCa) cells were isolated from two sources: post-operative tissue of ovarian cancer and ascitic fluid. The phenotype of cells was characterized using flow cytometry, real-time RT-PCR, and immunofluorescence staining. The effect of HATMSC2-MVs on the biological activity of primary cells was analyzed in 2D (proliferation, migration, and cell survival) and 3D (cell survival) models. We demonstrated that HATMSC2-MVs internalized into primary ovarian cancer cells decrease the metabolic activity and induce the cancer cell death and are leading to decreased migratory activity of tumor cells. The results suggests that the anti-cancer effect of HATMSC2-MVs, with high probability, is contributed by the delivery of molecules that induce cell cycle arrest and apoptosis (p21, tumor suppressor p53, executor caspase 3) and proapoptotic regulators (bad, BIM, Fas, FasL, p27, TRAIL-R1, TRAIL-R2), and their presence has been confirmed by apoptotic protein antibody array. In this study, we demonstrate the ability to inhibit primary OvCa cells growth and apoptosis induction after exposure of OvCa cells on HATMSC2-MVs treatment; however, further studies are needed to clarify their anticancer activities.


Asunto(s)
Micropartículas Derivadas de Células , Células Madre Mesenquimatosas , Neoplasias Ováricas , Humanos , Femenino , Células Madre Mesenquimatosas/metabolismo , Apoptosis , Tejido Adiposo , Neoplasias Ováricas/metabolismo , Micropartículas Derivadas de Células/metabolismo
9.
Molecules ; 28(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37764288

RESUMEN

Garlic is known to be rich in antioxidants, inhibit the proliferation of various cancer cells, and hamper cancer formation and growth, but various forms of garlic can differ greatly in these respects. This study aimed to compare the antioxidant properties of acetone, ethanol, and aqueous extracts of fresh Polish and Spanish garlic, black and granulated garlic, as well as fresh and dried ramsons. Extracts of black and granulated garlic showed the lowest total antioxidant capacity (TAC). The content of phenolic compounds correlated with TAC measured by ABTS• decolorization and FRAP methods, and with the results of FRAP and DPPH• decolorization assays. Garlic extracts inhibited the proliferation of PEO1 and SKOV3 ovarian cancer cells and, usually to a smaller extent, MRC-5 fibroblasts. PBS extracts of fresh Spanish garlic showed the highest potency for inhibition of proliferation of PEO1 cells (IC50 of 0.71 µg extract dry mass/100 µL medium). No significant correlation was found between the potency for inhibition of proliferation and the content of phenolics or flavonoids, confirming that phenolics are the main determinants of TAC but do not contribute significantly to the antiproliferative effects of garlic.

10.
Microb Cell Fact ; 22(1): 197, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37759261

RESUMEN

BACKGROUND: Ovarian cancer is one of the most frequent and deadly gynaecological cancers, often resistant to platinum-based chemotherapy, the current standard of care. Halophilic microorganisms have been shown to produce a large variety of metabolites, some of which show toxicity to various cancer cell lines. However, none have yet been shown to be active against ovarian cancer cells. Here, we examined the effects of metabolites secreted by the halophilic archaea Halorhabdus rudnickae and Natrinema salaciae on various cancer cell lines, including ovarian cancer cell lines. RESULTS: 1H NMR analyses of Hrd. rudnickae and Nnm. salaciae culture supernatants contain a complex mixture of metabolites that differ between species, and even between two different strains of the same species, such as Hrd. rudnickae strains 64T and 66. By using the MTT and the xCELLigence RTCA assays, we found that the secreted metabolites of all three halophilic strains expressed cytotoxicity to the ovarian cancer cell lines, especially A2780, as well as its cisplatin-resistant derivative A2780cis, in a dose-dependent manner. The other tested cell lines A549, HepG2, SK-OV-3 and HeLa were only minimally, or not at all affected by the archaeal metabolites, and this was only seen with the MTT assay. CONCLUSIONS: The halophilic archaea Hrd. rudnickae and Nnm. salaciae, isolated from a Polish salt mine and Lake Medee in the Mediterranean Sea, respectively, secrete metabolites that are active against ovarian cancer cells, including those that are resistant to cisplatin. This opens potential new possibilities for the treatment of these frequent and deadly gynaecological cancers.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Cisplatino , Línea Celular Tumoral , Antineoplásicos/farmacología , Células HeLa
11.
BMC Cancer ; 23(1): 699, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495988

RESUMEN

Drug resistance is a major cause of the inefficacy of conventional cancer therapies, and often accompanied by severe side effects. Thus, there is an urgent need to develop novel drugs with low cytotoxicity, high selectivity and minimal acquired chemical resistance. Peptide-based drugs (less than 0.5 kDa) have emerged as a potential approach to address these issues due to their high specificity and potent anticancer activity. In this study, we developed a support vector machine model (SVM) to detect the potential anticancer properties of novel peptides by scanning the American University in Cairo (AUC) Red Sea metagenomics library. We identified a novel 37-mer antimicrobial peptide through SVM pipeline analysis and characterized its anticancer potential through in silico cross-examination. The peptide sequence was further modified to enhance its anticancer activity, analyzed for gene ontology, and subsequently synthesized. To evaluate the anticancer properties of the modified 37-mer peptide, we assessed its effect on the viability and morphology of SNU449, HepG2, SKOV3, and HeLa cells, using an MTT assay. Additionally, we evaluated the migration capabilities of SNU449 and SKOV3 cells using a scratch-wound healing assay. The targeted selectivity of the modified peptide was examined by evaluating its hemolytic activity on human erythrocytes. Treatment with the peptide significantly reduced cell viability and had a critical impact on the morphology of hepatocellular carcinoma (SNU449 and HepG2), and ovarian cancer (SKOV3) cells, with a marginal effect on cervical cancer cell lines (HeLa). The viability of a human fibroblast cell line (1Br-hTERT) was also significantly reduced by peptide treatment, as were the proliferation and migration abilities of SNU449 and SKOV3 cells. The annexin V assay revealed programmed cell death (apoptosis) as one of the potential cellular death pathways in SNU449 cells upon peptide treatment. Finally, the peptide exhibited antimicrobial effects on both gram-positive and gram-negative bacterial strains. The findings presented here suggest the potential of our novel peptide as a potent anticancer and antimicrobial agent.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Antineoplásicos , Femenino , Humanos , Células HeLa , Línea Celular Tumoral , Océano Índico , Péptidos Catiónicos Antimicrobianos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis , Proliferación Celular
12.
Transl Cancer Res ; 12(4): 828-836, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37180664

RESUMEN

Background: Globally, ovarian cancer is the leading cause of female reproductive-related death, with a 5-year survival rate below 50%. Conventional therapies, such as cancer cell reduction and paclitaxel chemotherapy, have strong toxicity and are prone to drug resistance. Thus, the development of alternatives for the treatment of ovarian cancer is urgently needed. Methyl vanillate is a principal component of Hovenia dulcis Thunberg. It is known that several cancer cells are inhibited by methyl vanillate; however, whether methyl vanillate can inhibit the proliferation and migration of ovarian cancer cells still needs to be further studied. Methods: In this study, cell counting kit 8 (CCK8) was used to examine the effects of methyl vanillic acid on the proliferation of SKOV3 cell lines and human ovarian surface epithelial cell (HOSEpiC) lines. Wound healing and transwell assays were used to determine the effect of methyl vanillate on cell migration. The expression of epithelial-mesenchymal transition (EMT) marker proteins (E-cadherin and vimentin), transcription factors (Snail and ZEB2), and skeletal proteins (F-actin) were evaluated with Western blotting. F-actin was detected by immunofluorescence assay. Results: The proliferation and migration of SKOV3 cells were dose-dependently inhibited by methyl vanillate, but HOSEpiC cells were not inhibited by low concentrations of methyl vanillate. Western blotting analyses revealed a significant decrease in the expression of vimentin and a significant increase in the expression of E-cadherin in SKOV3 cells treated with methyl vanillate. This finding indicated that EMT inhibition was induced by the vanillate. Furthermore, methyl vanillate inhibited the expression of transcription factors (Snail and ZEB2) in SKOV3 cells as well as cytoskeletal F-actin assembly. Conclusions: Methyl vanillate plays an important role in inhibiting EMT and cell proliferation and the migration of ovarian cancer, likely via the inhibition of the ZEB2/Snail signaling pathway. Consequently, methyl vanillate may be a promising therapeutic drug for ovarian cancer.

13.
Biomedicines ; 11(5)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37238935

RESUMEN

Licochalcone A (LicA), a major active component of licorice, has been reported to exhibit various pharmacological actions. The purpose of this study was to investigate the anticancer activity of LicA and detail its molecular mechanisms against ovarian cancer. SKOV3 human ovarian cancer cells were used in this study. Cell viability was measured using a cell counting kit-8 assay. The percentages of apoptotic cells and cell cycle arrest were determined by flow cytometry and Muse flow cytometry. The expression levels of proteins regulating cell apoptosis, cell cycle, and the signal transducer and activator of transcription 3 (STAT3) signaling pathways were examined using Western blotting analysis. The results indicated that LicA treatment inhibited the cell viability of SKOV3 cells and induced G2/M phase arrest. Furthermore, LicA induced an increase in ROS levels, a reduction in mitochondrial membrane potential, and apoptosis accompanied by an increase in cleaved caspases and cytoplasmic cytochrome c. Additionally, LicA caused a dramatic decrease in STAT3 protein levels, but not mRNA levels, in SKOV3 cells. Treatment with LicA also reduced phosphorylation of the mammalian target of rapamycin and eukaryotic translation initiation factor 4E-binding protein in SKOV3 cells. The anti-cancer effects of LicA on SKOV3 cells might be mediated by reduced STAT3 translation and activation.

14.
Int J Nanomedicine ; 17: 5697-5731, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466784

RESUMEN

Background: Exosomes, which are nanovesicles secreted by almost all the cells, mediate intercellular communication and are involved in various physiological and pathological processes. We aimed to investigate the effects of graphene oxide (GO) on the biogenesis and release of exosomes in human ovarian cancer (SKOV3) cells. Methods: Exosomes were isolated using ultracentrifugation and ExoQuick and characterized by various analytical techniques. The expression levels of exosome markers were analyzed via quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Results: Graphene oxide (10-50 µg/mL), cisplatin (2-10 µg/mL), and C6-ceramide (5-25 µM) inhibited the cell viability, proliferation, and cytotoxicity in a dose-dependent manner. We observed that graphene oxide (GO), cisplatin (CIS), and C6-Ceramide (C6-Cer) stimulated acetylcholine esterase and neutral sphingomyelinase activity, total exosome protein concentration, and exosome counts associated with increased level of apoptosis, oxidative stress and endoplasmic reticulum stress. In contrast, GW4869 treatment inhibits biogenesis and release of exosomes. We observed that the human ovarian cancer cells secreted exosomes with typical cup-shaped morphology and surface protein biomarkers. The expression levels of TSG101, CD9, CD63, and CD81 were significantly higher in GO-treated cells than in control cells. Further, cytokine and chemokine levels were significantly higher in exosomes isolated from GO-treated SKOV3 cells than in those isolated from control cells. SKOV3 cells pre-treated with N-acetylcysteine or GW4869 displayed a significant reduction in GO-induced exosome biogenesis and release. Furthermore, endocytic inhibitors decrease exosome biogenesis and release by impairing endocytic pathways. Conclusion: This study identifies GO as a potential tool for targeting the exosome pathway and stimulating exosome biogenesis and release. We believe that the knowledge acquired in this study can be potentially extended to other exosome-dominated pathologies and model systems. Furthermore, these nanoparticles can provide a promising means to enhance exosome production in SKOV3 cells.


Asunto(s)
Exosomas , Neoplasias Ováricas , Humanos , Femenino , Cisplatino , Carcinoma Epitelial de Ovario , Neoplasias Ováricas/tratamiento farmacológico
15.
Pak J Med Sci ; 38(4Part-II): 872-877, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634603

RESUMEN

Objective: To analyze the effects of carboplatin combined with paclitaxel-based intraperitoneal hyperthermic perfusion chemotherapy (IPCH) on serum levels of human epididymis protein 4 (HE4) and mitogen-dependent oncogene-1 (DJ-1) in patients with advanced recurrent ovarian cancer (OC). Methods: From July 2019 to July 2020, patients with advanced recurrent OC (n=92) treated in Affiliated Hospital of Hebei Engineering University were selected as study subjects. According to the random number table method, patients were divided into control group and observation group. Patients in the control group were treated with carboplatin combined with paclitaxel-based intravenous chemotherapy, and patients in the observation group were treated with carboplatin combined with paclitaxel-based IPCH. The therapeutic effects, serum levels of HE4, DJ-1 and human kallikrein 10 (HK-10), peripheral blood immune indexes and adverse reactions of patients were compared between the two groups. Results: The response rate of the observation group was significantly higher than that of the control group (p<0.05); after treatment, the indexes of HE4, DJ-1 and HK-10 in the two groups were significantly decreased, while the indexes of CD3+CD4+, CD3+CD56+ and CD3+CD4+/CD3+CD8+ were significantly increased; moreover, significantly lower indexes of HE4, DJ-1 and HK-10 and significantly higher indexes of CD3+CD4+, CD3+CD56+ and CD3+CD4+/CD3+CD8+ were found in the observation group when compared with the control group (p<0.05). The severity of myelosuppression, nausea and vomiting in the observation group was significantly lower than that in the control group, and the total tumor metastasis rate in the observation group was significantly lower than that in the control group (p<0.05). Conclusions: Carboplatin combined with paclitaxel IPCH had obvious inhibitory effects on HE4, DJ-1 and other serum tumor markers in patients with advanced recurrent OC, with a more prominent clinical effect, and could further significantly reduce the risk of adverse reactions and metastasis.

16.
Front Oncol ; 12: 891191, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547879

RESUMEN

[This corrects the article DOI: 10.3389/fonc.2021.643129.].

17.
Molecules ; 27(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35408681

RESUMEN

Kalanchoe species are succulents with anti-inflammatory, antioxidant, and analgesic properties, as well as cytotoxic activity. One of the most popular species cultivated in Europe is Kalanchoe daigremontiana Raym.-Hamet and H. Perrier. In our study, we analyzed the phytochemical composition of K. daigremontiana water extract using UHPLC-QTOF-MS and estimated the cytotoxic activity of the extract on human ovarian cancer SKOV-3 cells by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, flow cytometry, luminometric, and fluorescent microscopy techniques. The expression levels of 92 genes associated with cell death were estimated via real-time PCR. The antioxidant activity was assessed via flow cytometry on human keratinocyte HaCaT cell line. The DPPH (2,2-diphenyl-1-picrylhydrazyl) radical and FRAP (ferric-reducing antioxidant power) assays were also applied. We identified twenty bufadienolide compounds in the water extract and quantified eleven. Bersaldegenin-1,3,5-orthoacetate and bryophyllin A were present in the highest amounts (757.4 ± 18.7 and 573.5 ± 27.2 ng/mg dry weight, respectively). The extract showed significant antiproliferative and cytotoxic activity, induced depolarization of the mitochondrial membrane, and significantly arrested cell cycle in the S and G2/M phases of SKOV-3 cells. Caspases-3, 7, 8, and 9 were not activated during the treatment, which indicated non-apoptotic cell death triggered by the extract. Additionally, the extract increased the level of oxidative stress in the cancer cell line. In keratinocytes treated with menadione, the extract moderately reduced the level of oxidative stress. This antioxidant activity was confirmed by the DPPH and FRAP assays, where the obtained IC50 values were 1750 ± 140 and 1271.82 ± 53.25 µg/mL, respectively. The real-time PCR analysis revealed that the extract may induce cell death via TNF receptor (tumor necrosis factor receptor) superfamily members 6 and 10.


Asunto(s)
Antineoplásicos , Kalanchoe , Antineoplásicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Humanos , Kalanchoe/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Agua
18.
FASEB J ; 36(3): e22140, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35107852

RESUMEN

Few studies explored the role of microRNAs (miRNAs) in the post-transcriptional regulation of glycolytic proteins and downstream effectors in ovarian cancer cells. We recently showed that the functional activation of the cytoskeletal regulator FAK in endothelial cells is fostered by the glycolytic enhancer 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3). We tested the hypothesis that miR-206 and mir-26b, emerging onco-suppressors targeting PFKFB3 in estrogen-dependent tumors, would regulate proliferation and migration of serous epithelial ovarian cancer (EOC) cells via common glycolytic proteins, i.e., GLUT1 and PFKFB3, and downstream FAK. PFKFB3 was overexpressed in SKOV3, and its pharmacological inhibition with 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) significantly reduced cell proliferation and motility. Both miR-206 and miR-26b directly targeted PFKFB3 as evaluated by a luciferase reporter assay. However, endogenous levels of miR-26b were higher than those of miR-206, which was barely detectable in SKOV3 as well as OVCAR5 and CAOV3 cells. Accordingly, only the anti-miR-26b inhibitor concentration-dependently increased PFKFB3 levels. While miR-206 overexpression impaired proliferation and migration by downregulating PFKFB3 levels, the decreased PFKFB3 protein levels related to miR-26 overexpression had no functional consequences in all EOC cell lines. Finally, consistent with the migration outcome, exogenous miR-206 and miR-26b induced opposite effects on the levels of total FAK and of its phosphorylated form at Tyr576/577. 3PO did not prevent miR-26b-induced SKOV3 migration. Overall, these results support the inverse relation between endogenous miRNA levels and their tumor-suppressive effects and suggest that restoring miR-206 expression represents a potential dual anti-PFKFB3/FAK strategy to control ovarian cancer progression.


Asunto(s)
Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo/genética , Quinasa 1 de Adhesión Focal/genética , MicroARNs/genética , Neoplasias Ováricas/genética , Fosfofructoquinasa-2/genética , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/patología , Línea Celular , Línea Celular Tumoral , Femenino , Regulación de la Expresión Génica/genética , Glucólisis/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neoplasias Ováricas/patología
19.
J Exp Clin Cancer Res ; 41(1): 50, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35120576

RESUMEN

BACKGROUND: High-grade serous ovarian cancer (HGSOC) has poor survival rates due to a combination of diagnosis at advanced stage and disease recurrence as a result of chemotherapy resistance. In BRCA1 (Breast Cancer gene 1) - or BRCA2-wild type (BRCAwt) HGSOC patients, resistance and progressive disease occur earlier and more often than in mutated BRCA. Identification of biomarkers helpful in predicting response to first-line chemotherapy is a challenge to improve BRCAwt HGSOC management. METHODS: To identify a gene signature that can predict response to first-line chemotherapy, pre-treatment tumor biopsies from a restricted cohort of BRCAwt HGSOC patients were profiled by RNA sequencing (RNA-Seq) technology. Patients were sub-grouped according to platinum-free interval (PFI), into sensitive (PFI > 12 months) and resistant (PFI < 6 months). The gene panel identified by RNA-seq analysis was then tested by high-throughput quantitative real-time PCR (HT RT-qPCR) in a validation cohort, and statistical/bioinformatic methods were used to identify eligible markers and to explore the relevant pathway/gene network enrichments of the identified gene set. Finally, a panel of primary HGSOC cell lines was exploited to uncover cell-autonomous mechanisms of resistance. RESULTS: RNA-seq identified a 42-gene panel discriminating sensitive and resistant BRCAwt HGSOC patients and pathway analysis pointed to the immune system as a possible driver of chemotherapy response. From the extended cohort analysis of the 42 DEGs (differentially expressed genes), a statistical approach combined with the random forest classifier model generated a ten-gene signature predictive of response to first-line chemotherapy. The ten-gene signature included: CKB (Creatine kinase B), CTNNBL1 (Catenin, beta like 1), GNG11 (G protein subunit gamma 11), IGFBP7 (Insulin-like growth factor-binding protein 7), PLCG2 (Phospholipase C, gamma 2), RNF24 (Ring finger protein 24), SLC15A3 (Solute carrier family 15 member 3), TSPAN31 (Tetraspanin 31), TTI1 (TELO2 interacting protein 1) and UQCC1 (Ubiquinol-cytochrome c reductase complex assembly factor). Cytotoxicity assays, combined with gene-expression analysis in primary HGSOC cell lines, allowed to define CTNNBL1, RNF24, and TTI1 as cell-autonomous contributors to tumor resistance. CONCLUSIONS: Using machine-learning techniques we have identified a gene signature that could predict response to first-line chemotherapy in BRCAwt HGSOC patients, providing a useful tool towards personalized treatment modalities.


Asunto(s)
Proteína BRCA1/genética , Perfilación de la Expresión Génica/métodos , Neoplasias Ováricas/genética , Femenino , Humanos , Clasificación del Tumor , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/patología , Estudios Retrospectivos , Análisis de Supervivencia
20.
Toxicol Appl Pharmacol ; 434: 115816, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34856211

RESUMEN

Most women with ovarian cancer are treated with chemotherapy before or after surgery. Unfortunately, chemotherapy treatment can cause negative side effects and the onset of multidrug resistance (MDR). The aim of this study is to evaluate the chemosensitizing effect of a natural compound, voacamine (VOA), in ovarian (A2780 DX) and colon (LoVo DX) cancer drug-resistant cell lines which overexpress P-glycoprotein (P-gp), in combination with paclitaxel (PTX), or doxorubicin (DOX) or 5-fluorouracil (5-FU). VOA, a bisindole alkaloid extracted from Peschiera fuchsiaefolia, has already been shown to be effective in enhancing the effect of doxorubicin, because it interferes with the P-gp function. Ovarian cancer cytotoxicity test shows that single treatments with VOA, DOX and PTX do not modify cell viability, while pretreatment with VOA, and then PTX or DOX for 72 h, induces a decrease. In colon cancer, since 5-FU is not a-substrate for P-gp, VOA has no sensitizing effect while in VOA + DOX there is a decrease in viability. Annexin V/PI test, cell cycle analysis, activation of cleaved PARP1 confirm that VOA plus PTX induce apoptotic cell death. Confocal microscopy observations show the different localization of NF-kB after treatment with VOA + PTX, confirming the inhibition of nuclear translocation induced by VOA pretreatment. Our data show the specific effect of VOA which only works on drugs known to be substrates of P-gp.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Resistencia a Antineoplásicos , Ibogaína/análogos & derivados , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular , Neoplasias del Colon , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ibogaína/química , Ibogaína/farmacología , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA