Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Ecol Evol ; 24(1): 109, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160456

RESUMEN

The songs of birds are complex signals that may have several functions and vary widely among species. Different ecological, behavioural and morphological factors, as well as phylogeny, have been associated as predictors of the evolution of song structure. However, the importance of differences in development, despite their relevance, has seldom been considered. Here, we analysed the evolution of song in two families of songbirds that differ in song development, manakins (suboscines) and cardinals (oscines), with their phylogeny, morphology, and ecology. Our results show that song characteristics had higher phylogenetic signal in cardinals than in manakins, suggesting higher evolutionary lability in the suboscines. Body mass was the main predictor of song parameters in manakins, and together with habitat type, had a major effect on cardinals' song structure. Precipitation and altitude were also associated with some song characteristics in cardinals. Our results bring unexpected insights into birdsong evolution, in which non-learners (manakins) revealed greater evolutionary lability than song learners (cardinals).


Asunto(s)
Filogenia , Pájaros Cantores , Vocalización Animal , Animales , Vocalización Animal/fisiología , Pájaros Cantores/fisiología , Pájaros Cantores/genética , Peso Corporal , Evolución Biológica , Masculino , Passeriformes/fisiología , Passeriformes/genética , Ecosistema
2.
Mol Phylogenet Evol ; 162: 107206, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34015447

RESUMEN

Several bird taxa have been recently described or elevated to full species and almost twice as many bird species than are currently recognized may exist. Defining species is one of the most basic and important issues in biological science because unknown or poorly defined species hamper subsequent studies. Here, we evaluate the species limits and evolutionary history of Tunchiornis ochraceiceps-a widespread forest songbird that occurs in the lowlands of Central America, Chocó and Amazonia-using an integrative approach that includes plumage coloration, morphometrics, vocalization and genomic data. The species has a relatively old crown age (~9 Ma) and comprises several lineages with little, if any, evidence of gene flow among them. We propose a taxonomic arrangement composed of four species, three with a plumage coloration diagnosis and one deeply divergent cryptic species. Most of the remaining lineages have variable but unfixed phenotypic characters despite their relatively old origin. This decoupling of genomic and phenotypic differentiation reveals a remarkable case of phenotypic conservatism, possibly due to strict habitat association. Lineages are geographically delimited by the main Amazonian rivers and the Andes, a pattern observed in studies of other understory upland forest Neotropical birds, although phylogenetic relationships and divergence times among populations are idiosyncratic.


Asunto(s)
Variación Genética , Genómica , Filogenia , Pájaros Cantores/clasificación , Pájaros Cantores/genética , Animales , Flujo Génico , Fenotipo
3.
Biol Rev Camb Philos Soc ; 96(4): 1484-1503, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33797176

RESUMEN

Research on avian vocalisations has traditionally focused on male song produced by oscine passerines. However, accumulating evidence indicates that complex vocalisations can readily evolve outside the traditional contexts of mate attraction and territory defence by male birds, and yet the previous bias towards male song has shaped - and continues to shape - our understanding of avian communication as a whole. Accordingly, in this review we seek to address this imbalance by synthesising studies on female vocalisations from across signalling contexts throughout the Aves, and discuss the implications of recent empirical advances for our understanding of vocalisations in both sexes. This review reveals great structural and functional diversity among female vocalisations and highlights the important roles that vocalisations can play in mediating female-specific behaviours. However, fundamental gaps remain. While there are now several case studies that identify the function of female vocalisations, few quantify the associated fitness benefits. Additionally, very little is known about the role of vocal learning in the development of female vocalisations. Thus, there remains a pressing need to examine the function and development of all forms of vocalisations in female birds. In the light of what we now know about the functions and mechanisms of female vocalisations, we suggest that conventional male-biased definitions of songs and calls are inadequate for furthering our understanding of avian vocal communication more generally. Therefore, we propose two simple alternatives, both emancipated from the sex of the singer. The first distinguishes song from calls functionally as a sexually selected vocal signal, whilst the second distinguishes them mechanistically in terms of their underlying neurological processes. It is clear that more investigations are needed into the ultimate and proximate causes of female vocalisations; however, these are essential if we are to develop a holistic epistemology of avian vocal communication in both sexes, across ecological contexts and taxonomic divides.


Asunto(s)
Reproducción , Vocalización Animal , Animales , Comunicación , Femenino , Masculino
4.
Mol Ecol ; 29(15): 2922-2939, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32623766

RESUMEN

Several factors have been proposed as drivers of species diversification in the Neotropics, including environmental heterogeneity, the development of drainage systems and historical changes in forest distribution due to climatic oscillations. Here, we investigate which drivers contributed to the evolutionary history and current patterns of diversity of a polymorphic songbird (Arremon taciturnus) that is widely distributed in Amazonian and Atlantic forests as well as in Cerrado gallery and seasonally-dry forests. We use genomic, phenotypic and habitat heterogeneity data coupled with climatic niche modelling. Results suggest the evolutionary history of the species is mainly related to paleoclimatic changes, although changes in the strength of the Amazon river as a barrier to dispersal, current habitat heterogeneity and geographic distance were also relevant. We propose an ancestral distribution in the Guyana Shield, and recent colonization of areas south of the Amazon river at ~380 to 166 kya, and expansion of the distribution to southern Amazonia, Cerrado and the Atlantic Forest. Since then, populations south of the Amazon River have been subjected to cycles of isolation and possibly secondary contact due to climatic changes that affected habitat heterogeneity and population connectivity. Most Amazonian rivers are not associated with long lasting isolation of populations, but some might act as secondary barriers, susceptible to crossing under specific climatic conditions. Morphological variation, while stable in some parts of the distribution, is not a reliable indicator of genetic structure or phylogenetic relationships.


Asunto(s)
Pájaros Cantores , Animales , Teorema de Bayes , Brasil , Variación Genética , Genómica , Filogenia , Filogeografía , Pájaros Cantores/genética
5.
PeerJ ; 6: e5886, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30498628

RESUMEN

Grasslands in southern South America are extensive ecosystems which harbor a unique biodiversity; however, studies on the evolution of their taxa are scarce. Here we studied the phylogeography and population history of the Correndera Pipit (Anthus correndera), a grassland specialist bird with a large breeding distribution in southern South America, with the goals of investigating its phylogeographic history and relate it to the historical development of South American grasslands. The mitochondrial NADH dehydrogenase subunit II gene (ND2) was sequenced in 66 individuals from 19 localities and the intron 9 of the sex-linked gene for aconitase (ACOI9) was sequenced from a subset of those individuals, including all five subspecies of A. correndera, as well as the closely related A. antarcticus. Phylogenetic analysis revealed two distinct lineages within the complex: the first (A) corresponding to Andean subspecies A. c. calcaratus and A. c. catamarcae and the second (B) including birds traditionally assigned to A. c. correndera, A. c. chilensis, A. c. grayi and some individuals of A. c. catamarcae. A. antarcticus is nested within this second lineage. These results were also supported by evidence of niche divergence for variables associated with precipitation. The oldest split between clade A and B was estimated at c. 0.37 Mya, during the middle Pleistocene. Species distribution models for the present and the Last Glacial Maximum (LGM) suggest that grassland areas in southern South America remained relatively stable, in contrast to the general view of a reduction in grassland cover in South America since the LGM. Recent divergences and low phylogeographic structure (for lowland vs. highland geographic groups, intra-population genetic variance was greater than inter-groups; e.g., for ACOI9: 95.47% and ND2: 51.51% respectively), suggest widespread gene flow between lowland populations.

6.
Neurosci Lett ; 622: 49-54, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27095589

RESUMEN

In many social animals, early exposure to conspecific stimuli is critical for the development of accurate species recognition. Obligate brood parasitic songbirds, however, forego parental care and young are raised by heterospecific hosts in the absence of conspecific stimuli. Having evolved from non-parasitic, parental ancestors, how brood parasites recognize their own species remains unclear. In parental songbirds (e.g. zebra finch Taeniopygia guttata), the primary and secondary auditory forebrain areas are known to be critical in the differential processing of conspecific vs. heterospecific songs. Here we demonstrate that the same auditory brain regions underlie song discrimination in adult brood parasitic pin-tailed whydahs (Vidua macroura), a close relative of the zebra finch lineage. Similar to zebra finches, whydahs showed stronger behavioral responses during conspecific vs. heterospecific song and tone pips as well as increased neural responses within the auditory forebrain, as measured by both functional magnetic resonance imaging (fMRI) and immediate early gene (IEG) expression. Given parallel behavioral and neuroanatomical patterns of song discrimination, our results suggest that the evolutionary transition to brood parasitism from parental songbirds likely involved an "evolutionary tinkering" of existing proximate mechanisms, rather than the wholesale reworking of the neural substrates of species recognition.


Asunto(s)
Corteza Auditiva/fisiología , Discriminación en Psicología , Passeriformes/fisiología , Discriminación de la Altura Tonal , Vocalización Animal/fisiología , Estimulación Acústica , Animales , Femenino , Genes Inmediatos-Precoces , Imagen por Resonancia Magnética , Masculino , Pájaros Cantores/fisiología , Especificidad de la Especie
7.
Mol Phylogenet Evol ; 88: 1-15, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25837731

RESUMEN

In this study, we present a detailed family-level phylogenetic hypothesis for the largest avian order (Aves: Passeriformes) and an unmatched multi-calibrated, relaxed clock inference for the diversification of crown passerines. Extended taxon sampling allowed the recovery of many challenging clades and elucidated their position in the tree. Acanthisittia appear to have diverged from all other passerines at the early Paleogene, which is considerably later than previously suggested. Thus, Passeriformes may be younger and represent an even more intense adaptive radiation compared to the remaining avian orders. Based on our divergence time estimates, a novel hypothesis for the diversification of modern Suboscines is proposed. According to this hypothesis, the first split between New and Old World lineages would be related to the severing of the Africa-South America biotic connection during the mid-late Eocene, implying an African origin for modern Eurylaimides. The monophyletic status of groups not recovered by any subsequent study since their circumscription, viz. Sylvioidea including Paridae, Remizidae, Hyliotidae, and Stenostiridae; and Muscicapoidea including the waxwing assemblage (Bombycilloidea) were notable topological findings. We also propose possible ecological interactions that may have shaped the distinct Oscine distribution patterns in the New World. The insectivorous endemic Oscines of the Americas, Vireonidae (Corvoidea), Mimidae, and Troglodytidae (Muscicapoidea), probably interfered with autochthonous Suboscines through direct competition. Thus, the Early Miocene arrival of these lineages before any other Oscines may have occupied the few available niches left by Tyrannides, constraining the diversification of insectivorous Oscines that arrived in the Americas later. The predominantly frugivorous-nectarivorous members of Passeroidea, which account for most of the diversity of New World-endemic Oscines, may not have been subjected to competition with Tyrannides. In fact, the vast availability of frugivory niches combined with weak competition with the autochthonous passerine fauna may have been crucial for passeroids to thrive in the New World.


Asunto(s)
Biodiversidad , Passeriformes/clasificación , Filogenia , Pájaros Cantores/clasificación , África , Animales , Evolución Biológica , Fenómenos Geológicos , Passeriformes/genética , Filogeografía , Análisis de Secuencia de ADN , Pájaros Cantores/genética , América del Sur
8.
Behav Processes ; 106: 53-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24792818

RESUMEN

A common result in recent linguistic studies on word association networks is that their topology can often be described by Zipf's law, in which most words have few associations, whereas a few words are highly connected. However, little is known about syntactic networks in more rudimentary communication systems, which could represent a window into the early stages of language evolution. In this study, we investigate the syntactic network formed by syllable associations in the song of the oscine bird Troglodytes musculus. We use methods recently developed in the context of the study of complex networks to assess topological characteristics in the syntactic networks of T. musculus. We found statistically significant evidence for nestedness in the syllable association network of T. musculus, indicating network organization around a core of commonly used notes, small-world features, and a non-random degree distribution. Our analyses suggest the possibility of a balance between the maintenance of core notes and the acquisition/loss of rare notes through both cultural drift and improvisation. These results underscore the usefulness of investigating communication networks of other animal species in uncovering the initial steps in the evolution of complex syntax networks.


Asunto(s)
Lingüística/métodos , Pájaros Cantores/fisiología , Vocalización Animal/fisiología , Animales , Espectrografía del Sonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA