RESUMEN
Background: Asthma onset or worsening of the disease in adulthood may be associated with occupational asthma (OA) or work-exacerbated asthma (WEA). Oscillometry and respiratory modeling offer insight into the pathophysiology and contribute to the early diagnosis of respiratory abnormalities. Purpose: This study aims to compare the changes due to OA and WEA and evaluate the diagnostic accuracy of this method. Patients and Methods: Ninety-nine volunteers were evaluated: 33 in the control group, 33 in the OA group, and 33 in the WEA group. The area under the receiver operator characteristic curve (AUC) was used to describe diagnostic accuracy. Results: Oscillometric analysis showed increased resistance at 4 hz (R4, p<0.001), 20 hz (R20, p<0.05), R4-R20 (p<0.0001), and respiratory work (p<0.001). Similar analysis showed reductions in dynamic compliance (p<0.001) and ventilation homogeneity, as evaluated by resonance frequency (Fr, p<0.0001) and reactance area (p<0.0001). Respiratory modeling showed increased peripheral resistance (p<0.0001), hysteresivity (p<0.0001), and damping (p<0.0001). No significant changes were observed comparing OA with WEA in any parameter. For OA, the diagnostic accuracy analyses showed Fr as the most accurate among oscillometric parameters (AUC=0.938), while the most accurate from respiratory modeling was hysteresivity (AUC=0.991). A similar analysis for WEA also showed that Fr was the most accurate among traditional parameters (AUC=0.972), and hysteresivity was the most accurate from modeling (AUC=0.987). The evaluation of differential diagnosis showed low accuracy. Conclusion: Oscillometry and modeling have advanced our understanding of respiratory abnormalities in OA and WEA. Furthermore, our study presents evidence suggesting that these models could aid in the early diagnosis of these diseases. Respiratory oscillometry examinations necessitate only tidal breathing and are straightforward to conduct. Collectively, these practical considerations, coupled with the findings of our study, indicate that respiratory oscillometry in conjunction with respiratory modeling, may enhance lung function assessments in OA and WEA.
RESUMEN
Cell replacement therapies using medial ganglionic eminence (MGE)-derived GABAergic precursors reduce seizures by restoring inhibition in animal models of epilepsy. However, how MGE-derived cells affect abnormal neuronal networks and consequently brain oscillations to reduce ictogenesis is still under investigation. We performed quantitative analysis of pre-ictal local field potentials (LFP) of cortical and hippocampal CA1 areas recorded in vivo in the pilocarpine rat model of epilepsy, with or without intrahippocampal MGE-precursor grafts (PILO and PILO+MGE groups, respectively). The PILO+MGE animals had a significant reduction in the number of seizures. The quantitative analysis of pre-ictal LFP showed decreased power of cortical and hippocampal delta, theta and beta oscillations from the 5 min. interictal baseline to the 20 s. pre-ictal period in both groups. However, PILO+MGE animals had higher power of slow and fast oscillations in the cortex and lower power of slow and fast oscillations in the hippocampus compared to the PILO group. Additionally, PILO+MGE animals exhibited decreased cortico-hippocampal synchrony for theta and gamma oscillations at seizure onset and lower hippocampal CA1 synchrony between delta and theta with slow gamma oscillations compared to PILO animals. These findings suggest that MGE-derived cell integration into the abnormally rewired network may help control ictogenesis.
Asunto(s)
Corteza Cerebral , Modelos Animales de Enfermedad , Epilepsia , Hipocampo , Pilocarpina , Animales , Pilocarpina/toxicidad , Hipocampo/fisiopatología , Masculino , Corteza Cerebral/fisiopatología , Epilepsia/inducido químicamente , Epilepsia/fisiopatología , Ratas , Ondas Encefálicas/fisiología , Ratas Wistar , Electroencefalografía , Eminencia GanglionarRESUMEN
The electrical activity of the brain, characterized by its frequency components, reflects a complex interplay between periodic (oscillatory) and aperiodic components. These components are associated with various neurophysiological processes, such as the excitation-inhibition balance (aperiodic activity) or interregional communication (oscillatory activity). However, we do not fully understand whether these components are truly independent or if different neuromodulators affect them in different ways. The dopaminergic system has a critical role for cognition and motivation, being a potential modulator of these power spectrum components. To improve our understanding of these questions, we investigated the differential effects of this system on these components using electrocorticogram recordings in cats, which show clear oscillations and aperiodic 1/f activity. Specifically, we focused on the effects of haloperidol (a D2 receptor antagonist) on oscillatory and aperiodic dynamics during wakefulness and sleep. By parameterizing the power spectrum into these two components, our findings reveal a robust modulation of oscillatory activity by the D2 receptor across the brain. Surprisingly, aperiodic activity was not significantly affected and exhibited inconsistent changes across the brain. This suggests a nuanced interplay between neuromodulation and the distinct components of brain oscillations, providing insights into the selective regulation of oscillatory dynamics in awake states.
Asunto(s)
Encéfalo , Haloperidol , Sueño , Vigilia , Vigilia/efectos de los fármacos , Vigilia/fisiología , Animales , Haloperidol/farmacología , Sueño/efectos de los fármacos , Sueño/fisiología , Gatos , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Masculino , Ondas Encefálicas/efectos de los fármacos , Ondas Encefálicas/fisiología , Electrocorticografía/efectos de los fármacos , Antagonistas de Dopamina/farmacologíaRESUMEN
Most patients with schizophrenia (SCZ) do not exhibit violent behaviors and are more likely to be victims rather than perpetrators of violent acts. However, a subgroup of forensic detainees with SCZ exhibit tendencies to engage in criminal violations. Although numerous models have been proposed, ranging from substance use, serotonin transporter gene, and cognitive dysfunction, the molecular underpinnings of violence in SCZ patients remains elusive. Lithium and clozapine have established anti-aggression properties and recent studies have linked low cholesterol levels and ultraviolet (UV) radiation with human aggression, while vitamin D3 reduces violent behaviors. A recent study found that vitamin D3, omega-3 fatty acids, magnesium, and zinc lower aggression in forensic population. In this review article, we take a closer look at aryl hydrocarbon receptor (AhR) and the dysfunctional lipidome in neuronal membranes, with emphasis on cholesterol and vitamin D3 depletion, as sources of aggressive behavior. We also discuss modalities to increase the fluidity of neuronal double layer via membrane lipid replacement (MLR) and natural or synthetic compounds. This article is part of the Special Issue on "Personality Disorders".
Asunto(s)
Antipsicóticos , Esquizofrenia , Humanos , Esquizofrenia/metabolismo , Antipsicóticos/uso terapéutico , Colesterol/metabolismo , Animales , Colecalciferol/metabolismo , Agresión/fisiología , Agresión/efectos de los fármacosRESUMEN
Abnormal patterns of brain connectivity characterize epilepsy. However, little is known about these patterns during the stages preceding a seizure induced by pentylenetetrazol (PTZ). To investigate brain connectivity in male Wistar rats during the preictal phase of PTZ-induced seizures (60 mg/kg), we recorded local field potentials in the primary motor (M1) cortex, the ventral anterior (VA) nucleus of the thalamus, the hippocampal CA1 area, and the dentate gyrus (DG) during the baseline period and after PTZ administration. While there were no changes in power density between the baseline and preictal periods, we observed an increase in directional functional connectivity in theta from the hippocampal formation to M1 and VA, as well as in middle gamma from DG to CA1 and from CA1 to M1, and also in slow gamma from M1 to CA1. These findings are supported by increased phase coherence between DG-M1 in theta and CA1-M1 in middle gamma, as well as enhanced phase-amplitude coupling of delta-middle gamma in M1 and delta-fast gamma in CA1. Interestingly, we also noted a slight decrease in phase synchrony between CA1 and VA in slow gamma. Together, these results demonstrate increased functional connectivity between brain regions during the PTZ-induced preictal period, with this increase being particularly driven by the hippocampal formation.
Asunto(s)
Encéfalo , Pentilenotetrazol , Ratas Wistar , Convulsiones , Animales , Pentilenotetrazol/farmacología , Masculino , Convulsiones/inducido químicamente , Convulsiones/fisiopatología , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Ratas , Vías Nerviosas/fisiopatología , Vías Nerviosas/efectos de los fármacos , Modelos Animales de Enfermedad , Electroencefalografía/métodos , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/fisiopatología , Convulsivantes/toxicidad , Convulsivantes/farmacología , Ondas Encefálicas/efectos de los fármacos , Ondas Encefálicas/fisiología , Corteza Motora/efectos de los fármacos , Corteza Motora/fisiopatologíaRESUMEN
The left supramarginal gyrus (LSMG) may mediate attention to memory, and gauge memory state and performance. We performed a secondary analysis of 142 verbal delayed free recall experiments, in patients with medically-refractory epilepsy with electrode contacts implanted in the LSMG. In 14 of 142 experiments (in 14 of 113 patients), the cross-validated convolutional neural networks (CNNs) that used 1-dimensional(1-D) pairs of convolved high-gamma and beta tensors, derived from the LSMG recordings, could label recalled words with an area under the receiver operating curve (AUROC) of greater than 60% [range: 60-90%]. These 14 patients were distinguished by: 1) higher amplitudes of high-gamma bursts; 2) distinct electrode placement within the LSMG; and 3) superior performance compared with a CNN that used a 1-D tensor of the broadband recordings in the LSMG. In a pilot study of 7 of these patients, we also cross-validated CNNs using paired 1-D convolved high-gamma and beta tensors, from the LSMG, to: a) distinguish word encoding epochs from free recall epochs [AUC 0.6-1]; and distinguish better performance from poor performance during delayed free recall [AUC 0.5-0.86]. These experiments show that bursts of high-gamma and beta generated in the LSMG are biomarkers of verbal memory state and performance.
RESUMEN
Most of the literature on the neural bases of human reward and punishment processing has used monetary gains and losses, but less is known about the neurophysiological mechanisms underlying the anticipation and consumption of other types of rewarding stimuli. In the present study, EEG was recorded from 19 participants who completed a modified version of the Monetary Incentive Delay (MID) task. During the task, cues providing information about potential future outcomes were presented to the participants. Then, they had to respond rapidly to a target stimulus to win money or listening to pleasant music, or to avoid losing money or listening to unpleasant music. Results revealed similar responses for monetary and music cues, with increased activity for cues indicating potential gains compared to losses. However, differences emerged in the outcome phase between money and music. Monetary outcomes showed an interaction between the type of the cue and the outcome in the Feedback Related Negativity and Fb-P3 ERPs and increased theta activity increased for negative feedbacks. In contrast, music outcomes showed significant interactions in the Fb-P3 and theta activities. These findings suggest similar neurophysiological mechanisms in processing cues for potential positive or negative outcomes in these two types of stimuli.
Asunto(s)
Anticipación Psicológica , Electroencefalografía , Música , Recompensa , Humanos , Masculino , Femenino , Electroencefalografía/métodos , Adulto Joven , Anticipación Psicológica/fisiología , Adulto , Señales (Psicología) , Potenciales Evocados/fisiología , Encéfalo/fisiología , Motivación/fisiología , Estimulación Acústica/métodosRESUMEN
Speech can be defined as the human ability to communicate through a sequence of vocal sounds. Consequently, speech requires an emitter (the speaker) capable of generating the acoustic signal and a receiver (the listener) able to successfully decode the sounds produced by the emitter (i.e., the acoustic signal). Time plays a central role at both ends of this interaction. On the one hand, speech production requires precise and rapid coordination, typically within the order of milliseconds, of the upper vocal tract articulators (i.e., tongue, jaw, lips, and velum), their composite movements, and the activation of the vocal folds. On the other hand, the generated acoustic signal unfolds in time, carrying information at different timescales. This information must be parsed and integrated by the receiver for the correct transmission of meaning. This chapter describes the temporal patterns that characterize the speech signal and reviews research that explores the neural mechanisms underlying the generation of these patterns and the role they play in speech comprehension.
Asunto(s)
Habla , Humanos , Habla/fisiología , Percepción del Habla/fisiología , Acústica del Lenguaje , PeriodicidadRESUMEN
INTRODUCTION: Attention and working memory are key cognitive functions that allow us to select and maintain information in our mind for a short time, being essential for our daily life and, in particular, for learning and academic performance. It has been shown that musical training can improve working memory performance, but it is still unclear if and how the neural mechanisms of working memory and particularly attention are implicated in this process. In this work, we aimed to identify the oscillatory signature of bimodal attention and working memory that contributes to improved working memory in musically trained children. MATERIALS AND METHODS: We recruited children with and without musical training and asked them to complete a bimodal (auditory/visual) attention and working memory task, whereas their brain activity was measured using electroencephalography. Behavioral, time-frequency, and source reconstruction analyses were made. RESULTS: Results showed that, overall, musically trained children performed better on the task than children without musical training. When comparing musically trained children with children without musical training, we found modulations in the alpha band pre-stimuli onset and the beginning of stimuli onset in the frontal and parietal regions. These correlated with correct responses to the attended modality. Moreover, during the end phase of stimuli presentation, we found modulations correlating with correct responses independent of attention condition in the theta and alpha bands, in the left frontal and right parietal regions. CONCLUSIONS: These results suggest that musically trained children have improved neuronal mechanisms for both attention allocation and memory encoding. Our results can be important for developing interventions for people with attention and working memory difficulties.
Asunto(s)
Ritmo alfa , Atención , Memoria a Corto Plazo , Música , Ritmo Teta , Humanos , Memoria a Corto Plazo/fisiología , Atención/fisiología , Masculino , Femenino , Niño , Ritmo Teta/fisiología , Ritmo alfa/fisiología , Percepción Auditiva/fisiología , Electroencefalografía , Percepción Visual/fisiología , Encéfalo/fisiologíaRESUMEN
5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a potent classical psychedelic known to induce changes in locomotion, behaviour, and sleep in rodents. However, there is limited knowledge regarding its acute neurophysiological effects. Local field potentials (LFPs) are commonly used as a proxy for neural activity, but previous studies investigating psychedelics have been hindered by confounding effects of behavioural changes and anaesthesia, which alter these signals. To address this gap, we investigated acute LFP changes in the hippocampus (HP) and medial prefrontal cortex (mPFC) of freely behaving rats, following 5-MeO-DMT administration. 5-MeO-DMT led to an increase of delta power and a decrease of theta power in the HP LFPs, which could not be accounted for by changes in locomotion. Furthermore, we observed a dose-dependent reduction in slow (20-50 Hz) and mid (50-100 Hz) gamma power, as well as in theta phase modulation, even after controlling for the effects of speed and theta power. State map analysis of the spectral profile of waking behaviour induced by 5-MeO-DMT revealed similarities to electrophysiological states observed during slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. Our findings suggest that the psychoactive effects of classical psychedelics are associated with the integration of waking behaviours with sleep-like spectral patterns in LFPs.
Asunto(s)
Hipocampo , Corteza Prefrontal , Sueño , Vigilia , Animales , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Ratas , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Vigilia/efectos de los fármacos , Vigilia/fisiología , Masculino , Sueño/efectos de los fármacos , Sueño/fisiología , Electroencefalografía , Ritmo Teta/efectos de los fármacos , Alucinógenos/farmacologíaRESUMEN
Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.
Asunto(s)
Encéfalo , Roedores , Animales , Humanos , Anciano , Corteza Prefrontal/fisiología , Neuronas/fisiología , Cognición/fisiologíaRESUMEN
Brain disturbances during development can have a lasting impact on neural function and behavior. Seizures during this critical period are linked to significant long-term consequences such as neurodevelopmental disorders, cognitive impairments, and psychiatric symptoms, resulting in a complex spectrum of multimorbidity. The hippocampus-prefrontal cortex (HPC-PFC) circuit emerges as a potential common link between such disorders. However, the mechanisms underlying these outcomes and how they relate to specific behavioral alterations are unclear. We hypothesized that specific dysfunctions of hippocampal-cortical communication due to early-life seizure would be associated with distinct behavioral alterations observed in adulthood. Here, we performed a multilevel study to investigate behavioral, electrophysiological, histopathological, and neurochemical long-term consequences of early-life Status epilepticus in male rats. We show that adult animals submitted to early-life seizure (ELS) present working memory impairments and sensorimotor disturbances, such as hyperlocomotion, poor sensorimotor gating, and sensitivity to psychostimulants despite not exhibiting neuronal loss. Surprisingly, cognitive deficits were linked to an aberrant increase in the HPC-PFC long-term potentiation (LTP) in a U-shaped manner, while sensorimotor alterations were associated with heightened neuroinflammation, as verified by glial fibrillary acidic protein (GFAP) expression, and altered dopamine neurotransmission. Furthermore, ELS rats displayed impaired HPC-PFC theta-gamma coordination and an abnormal brain state during active behavior resembling rapid eye movement (REM) sleep oscillatory dynamics. Our results point to impaired HPC-PFC functional connectivity as a possible pathophysiological mechanism by which ELS can cause cognitive deficits and psychiatric-like manifestations even without neuronal loss, bearing translational implications for understanding the spectrum of multidimensional developmental disorders linked to early-life seizures.
Asunto(s)
Hipocampo , Convulsiones , Ratas , Animales , Masculino , Hipocampo/patología , Encéfalo , Corteza Prefrontal/fisiología , Memoria a Corto Plazo/fisiologíaRESUMEN
Rodents establish dominance hierarchy as a social ranking system in which one subject acts as dominant over all the other subordinate individuals. Dominance hierarchy regulates food access and mating opportunities, but little is known about its significance in other social behaviors, for instance during collective navigation for foraging or migration. Here, we implemented a simplified goal-directed spatial task in mice, in which animals navigated individually or collectively with their littermates foraging for food. We compared between conditions and found that the social condition exerts significant influence on individual displacement patterns, even when efficient navigation rules leading to reward had been previously learned. Thus, movement patterns and consequent task performance were strongly dependent on contingent social interactions arising during collective displacement, yet their influence on individual behavior was determined by dominance hierarchy. Dominant animals did not behave as leaders during collective displacement; conversely, they were most sensitive to the social environment adjusting their performance accordingly. Social ranking in turn was associated with specific spontaneous neural activity patterns in the prefrontal cortex and hippocampus, with dominant mice showing higher firing rates, larger ripple oscillations, and stronger neuronal entrainment by ripples than subordinate animals. Moreover, dominant animals selectively increased their cortical spiking activity during collective movement, while subordinate mice did not modify their firing rates, consistent with dominant animals being more sensitive to the social context. These results suggest that dominance hierarchy influences behavioral performance during contingent social interactions, likely supported by the coordinated activity in the hippocampal-prefrontal circuit.
RESUMEN
Autism spectrum disorder (ASD) is a neurodevelopmental condition that exhibits a widely heterogeneous range of social and cognitive symptoms. This feature has challenged a broad comprehension of this neurodevelopmental disorder and therapeutic efforts to address its difficulties. Current therapeutic strategies have focused primarily on treating behavioral symptoms rather than on brain psychophysiology. During the past years, the emergence of non-invasive brain stimulation techniques (NIBS) has opened alternatives to the design of potential combined treatments focused on the neurophysiopathology of neuropsychiatric disorders like ASD. Such interventions require identifying the key brain mechanisms underlying the symptomatology and cognitive features. Evidence has shown alterations in oscillatory features of the neural ensembles associated with cognitive functions in ASD. In this line, we elaborated a systematic revision of the evidence of alterations in brain oscillations that underlie key cognitive processes that have been shown to be affected in ASD during childhood and adolescence, namely, social cognition, attention, working memory, inhibitory control, and cognitive flexibility. This knowledge could contribute to developing therapies based on NIBS to improve these processes in populations with ASD.
RESUMEN
Cognitive decline is common among older individuals, and although the underlying brain mechanisms are not entirely understood, researchers have suggested using EEG frontal alpha activity during general anaesthesia as a potential biomarker for cognitive decline. This is because frontal alpha activity associated with GABAergic general anaesthetics has been linked to cognitive function. However, oscillatory-specific alpha power has also been linked with chronological age. We hypothesize that cognitive function mediates the association between chronological age and (oscillatory-specific) alpha power. We analysed data from 380 participants (aged over 60) with baseline screening assessments and intraoperative EEG. We utilized the telephonic Montreal Cognitive Assessment to assess cognitive function. We computed total band power, oscillatory-specific alpha power, and aperiodics to measure anaesthesia-induced alpha activity. To test our mediation hypotheses, we employed structural equation modelling. Pairwise correlations between age, cognitive function and alpha activity were significant. Cognitive function mediated the association between age and classical alpha power [age â cognitive function â classical alpha; ß = -0.0168 (95% confidence interval: -0.0313 to -0.00521); P = 0.0016] as well as the association between age and oscillatory-specific alpha power [age â cognitive function â oscillatory-specific alpha power; ß = -0.00711 (95% confidence interval: -0.0154 to -0.000842); P = 0.028]. However, cognitive function did not mediate the association between age and aperiodic activity (1/f slope, P = 0.43; offset, P = 0.0996). This study is expected to provide valuable insights for anaesthesiologists, enabling them to make informed inferences about a patient's age and cognitive function from an analysis of anaesthetic-induced EEG signals in the operating room. To ensure generalizability, further studies across different populations are needed.
RESUMEN
The evolutionary dynamics of the ecoregions of southern South America and the species that inhabit them have been poorly studied, and few biogeographic hypotheses have been proposed and tested. Quaternary climatic oscillations are among the most important processes that have led to the current distribution of genetic variation in different regions of the world. In this work, we studied the evolutionary history and distribution of the Córdoba vesper mouse (Calomys venustus), a characteristic rodent of the region of which little is known about its natural history. Since the population dynamics of this species are influenced by climatic factors, this rodent is a suitable model to study the effects of Quaternary climatic oscillations in central Argentina. The mitochondrial cytochrome b gene was sequenced to analyze the phylogeography of C. venustus, and ecological niche modeling tools were used to map its potential distributions. The results of these approaches were combined to provide additional spatially explicit information about this species' past. Our results suggest that the Espinal was the area of origin of this species, which expanded demographically and spatially during the last glacial period. A close relationship was found between the Espinal and the Mountain Chaco. These results are consistent with previous studies and emphasize the role of the Espinal in the biogeographic history of southern South America as an area of origin of several species.
Asunto(s)
Citocromos b , Ecosistema , Filogeografía , Animales , Argentina , Citocromos b/genética , Evolución Biológica , ADN Mitocondrial/genética , Modelos Biológicos , Variación Genética , Distribución AnimalRESUMEN
BACKGROUND: The diversity and population genetic structure of many species have been shaped by historical and contemporary climatic changes. For the species of the South American Altiplano, the historical climatic changes are mainly related to the wet events of great magnitude and regional influence that occurred during the Pleistocene climatic oscillations (PCOs). In contrast, contemporary climate changes are associated with events of lesser magnitude and local influence related to intensifications of the South American Summer Monsoon (SASM). Although multiple studies have analyzed the effect of PCOs on the genetic patterns of highland aquatic species, little is known about the impact of contemporary climate changes in recent evolutionary history. Therefore, in this study, we investigated the change in population structure and connectivity using nuclear and mitochondrial markers throughout the distribution range of Heleobia ascotanensis, a freshwater Cochliopidae endemic to the Ascotán Saltpan. In addition, using geometric morphometric analyses, we evaluated the concomitance of genetic divergence and morphological differentiation. RESULTS: The mitochondrial sequence analysis results revealed the presence of highly divergent co-distributed and geographically nested haplotypes. This pattern reflects an extension in the distribution of groups that previously would have differentiated allopatrically. These changes in distribution would have covered the entire saltpan and would be associated with the large-scale wet events of the PCOs. On the other hand, the microsatellite results defined five spatially isolated populations, separated primarily by geographic barriers. Contemporary gene flow analyses suggest that post-PCO, climatic events that would have connected all populations did not occur. The morphometric analyses results indicate that there is significant morphological differentiation in the populations that are more isolated and that present the greatest genetic divergence. CONCLUSIONS: The contemporary population structure and morphological variation of H. ascotanensis mainly reflect the post-PCO climatic influence. Although both markers exhibit high genetic structuring, the microsatellite and morphology results show the preponderant influence of fragmentation in recent evolutionary history. The contemporary genetic pattern shows that in species that have limited dispersal capabilities, genetic discontinuities can appear rapidly, erasing signs of historical connectivity.
Asunto(s)
Evolución Biológica , Cambio Climático , Animales , Chile , Agua Dulce , CaracolesRESUMEN
The work presented here provides the guidelines and results for designing and implementing a highly sensitive modified Van der Pol - Duffing oscillator with a trigonometric damping function (VTD). This VTD can exhibit periodic and quasi-chaotic behavior necessary for application in weak signal detection. Here, we present two proposals: (1) A method based on a quasi-chaotic intermittent array (ANLIOA), whose all VTD parameters are calculated and fine-tuned toward a critical state between chaotic and periodic state through a Lyapunov exponent procedure, and (2) A method based on a single oscillator in an adaptive stopping oscillation system (ANLSOS), where VTD is established within an oscillatory regime. Both systems can detect non-stationary signals while reconstructing the time-frequency spectrogram in high resolution within severe noise conditions. The systems were adapted for the detection of a synthesized Doppler signal corresponding to the blood flow velocity profile from an artery. Comparative results using typical oscillators such as Duffing or Van der Pol demonstrate the superiority of the VTD oscillator in detection when used for both methods, whose mean absolute percentage error reached around 6% for a signal-to-noise ratio (SNR) of -10 dB. Furthermore, compared to other time-frequency methods, ANLIOA and ANLSOS promise high precision in detecting Doppler signals with low rates of frequency changes while minimizing energy emission and avoiding possible bio-thermal effects.
Asunto(s)
Velocidad del Flujo SanguíneoRESUMEN
The primary cilium is a non-motile sensory organelle that transduces environmental cues into cellular responses. It comprises an axoneme, a core of nine doublet microtubules (MTs) coated by a specialized membrane populated by receptors, and a high density of ion channels. Dysfunctional primary cilia generate the pathogenesis of several diseases known as ciliopathies. However, the electrical role of MTs in ciliary signaling remains largely unknown. Herein, we determined by the patch clamp technique the electrical activity of cytoplasmic and axonemal MTs from wild-type LLC-PK1 renal epithelial cells. We observed electrical oscillations with fundamental frequencies at â¼39 Hz and â¼93 Hz in sheets of cytoplasmic MTs. We also studied in situ and isolated, intact and Triton X-permeabilized primary cilia, observing electrical oscillations with peak frequencies at either 29-49 Hz (non-permeabilized) or â¼40-49 Hz (permeabilized) and â¼93 Hz (both). We applied Empirical Mode Decomposition (EMD), Continuous Wavelet Transform (CWT), and Cross-Correlation Analysis (CCA) to assess the differences and the coherence in the Time-Frequency domains of electrical oscillations between cytoplasmic and axonemal MTs. The data indicate that axonemal and cytoplasmic MTs show different patterns of electrical oscillations preserving coherence at specific frequency peaks that may serve as electromagnetic communication between compartments. Further, the electrical behavior of axonemal MTs was modified by siRNA deletion of polycystin-2 (PC2), which lengthens primary cilia, thus linking ciliary channels to the morphological and electrical behavior of cilia in ciliopathies. The encompassed evidence indicates that the primary cilium behaves as an electrical antenna, with an excitable MT structure that produces electrical oscillations whose synchronization and propagation constitute a novel cell signaling mechanism.
RESUMEN
FtsZ, a major cytoskeletal protein in all bacteria and archaea, forms a ring that directs cytokinesis. Bacterial FtsZ is considered the ancestral homolog of the eukaryotic microtubule (MT)-forming tubulins, sharing GTPase activity and the ability to assemble into protofilaments, rings, and sheets, but not MTs. Previous studies from our laboratory demonstrated that structures of isolated brain MTs spontaneously generate electrical oscillations and bursts of electrical activity similar to action potentials. No information about whether the prokaryotic tubulins may share similar properties is available. Here, we obtained by ammonium sulfate precipitation an enriched protein fraction of the endogenous FtsZ from wild-type Escherichia coli ATCC 25922 without any transfection or overexpression of the protein. As revealed by electron microscopy, FtsZ was detected by dot blot analysis and immunofluorescence that assembled into filaments and sheets in a polymerization buffer. We used the patch-clamp technique to explore the electrical properties of sheets of FtsZ and bacterial cells. Electrical recordings at various holding potentials ranging from ±200 mV showed a complex oscillatory behavior, with several peak frequencies between 12 and 110 Hz in the power spectra and a linear mean current response. To confirm the oscillatory electrical behavior of FtsZ we also conducted experiments with commercial recombinant FtsZ, with similar results. We also detected, by local field potentials, similar electrical oscillations in K+-depolarized pellets of E. coli cultures. FtsZ oscillations had a wider range of frequency peaks than MT sheets from eukaryotic origin. The findings indicate that the bacterial cytoskeleton generates electrical oscillators that may play a relevant role in cell division and unknown signaling mechanisms in bacterial populations.