Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Leukoc Biol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973261

RESUMEN

Receptor tyrosine kinase-like orphan receptor (ROR), consisting of ROR1 and ROR2, is a conserved family of receptor tyrosine kinase superfamily that plays crucial roles during embryonic development with limited expression in adult normal tissues. However, it is overexpressed in a range of hematological malignancies and solid tumors and functions in cellular processes including cell survival, polarity, and migration, serving as a potential target in cancer immunotherapy. This review summarizes the expression and structure of ROR in developmental morphogenesis and its function in cancers associated with Wnt5a signaling and highlights the cancer immunotherapy strategies targeting ROR.

2.
Front Pharmacol ; 15: 1349097, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495099

RESUMEN

G protein-coupled receptors (GPCRs) make up the largest receptor superfamily, accounting for 4% of protein-coding genes. Despite the prevalence of such transmembrane receptors, a significant number remain orphans, lacking identified endogenous ligands. Since their conception, the reverse pharmacology approach has been used to characterize such receptors. However, the multifaceted and nuanced nature of GPCR signaling poses a great challenge to their pharmacological elucidation. Considering their therapeutic relevance, the search for native orphan GPCR ligands continues. Despite limited structural input in terms of 3D crystallized structures, with advances in machine-learning approaches, there has been great progress with respect to accurate ligand prediction. Though such an approach proves valuable given that ligand scarcity is the greatest hurdle to orphan GPCR deorphanization, the future pairings of the remaining orphan GPCRs may not necessarily take a one-size-fits-all approach but should be more comprehensive in accounting for numerous nuanced possibilities to cover the full spectrum of GPCR signaling.

3.
Cells ; 13(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38334631

RESUMEN

We investigated multiple signaling pathways activated by CYP11A1-derived vitamin D3 hydroxymetabolites in human skin fibroblasts by assessing the actions of these molecules on their cognate receptors and by investigating the role of CYP27B1 in their biological activities. The actions of 20(OH)D3, 20,23(OH)2D3, 1,20(OH)2D3 and 1,20,23(OH)3D3 were compared to those of classical 1,25(OH)2D3. This was undertaken using wild type (WT) fibroblasts, as well as cells with VDR, RORs, or CYP27B1 genes knocked down with siRNA. Vitamin D3 hydroxymetabolites had an inhibitory effect on the proliferation of WT cells, but this effect was abrogated in cells with silenced VDR or RORs. The collagen expression by WT cells was reduced upon secosteroid treatment. This effect was reversed in cells where VDR or RORs were knocked down where the inhibition of collagen production and the expression of anti-fibrotic genes in response to the hydroxymetabolites was abrogated, along with ablation of their anti-inflammatory action. The knockdown of CYP27B1 did not change the effect of either 20(OH)D3 or 20,23(OH)2D3, indicating that their actions are independent of 1α-hydroxylation. In conclusion, the expression of the VDR and/or RORα/γ receptors in fibroblasts is necessary for the inhibition of both the proliferation and fibrogenic activity of hydroxymetabolites of vitamin D3, while CYP27B1 is not required.


Asunto(s)
Colecalciferol , Receptores de Calcitriol , Humanos , Colecalciferol/farmacología , Receptores de Calcitriol/metabolismo , Receptores de Ácido Retinoico , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , Fibroblastos/metabolismo , Colágeno , Tretinoina
4.
Br J Pharmacol ; 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38339984

RESUMEN

A large portion of the human GPCRome is still in the dark and understudied, consisting even of entire subfamilies of GPCRs such as odorant receptors, class A and C orphans, adhesion GPCRs, Frizzleds and taste receptors. However, it is undeniable that these GPCRs bring an untapped therapeutic potential that should be explored further. Open questions on these GPCRs span diverse topics such as deorphanisation, the development of tool compounds and tools for studying these GPCRs, as well as understanding basic signalling mechanisms. This review gives an overview of the current state of knowledge for each of the diverse subfamilies of understudied receptors regarding their physiological relevance, molecular mechanisms, endogenous ligands and pharmacological tools. Furthermore, it identifies some of the largest knowledge gaps that should be addressed in the foreseeable future and lists some general strategies that might be helpful in this process.

5.
Curr Issues Mol Biol ; 45(12): 9593-9605, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38132446

RESUMEN

Organic anion transporting polypeptide 1B1 (OATP1B1) is an influx transporter protein of the SLC superfamily, expressed mainly in the liver and some tumor cells. The mechanisms of its regulation are being actively studied. In the present study, the effect of sex hormones (estradiol, progesterone and testosterone) on OATP1B1 expression in HepG2 cells was examined. The role of adopted orphan receptors, farnasoid X receptor (FXR), constitutive androstane receptor (CAR), pregnane X receptor (PXR) and liver X receptor subtype alpha (LXRa), was also evaluated. Hormones were used in concentrations of 1, 10 and 100 µM, with incubation for 24 h. The protein expression of OATP1B1, FXR, CAR, PXR and LXRa was analyzed by Western blot. It was shown that estradiol (10 and 100 µM) increased the expression of OATP1B1, acting through CAR. Testosterone (1, 10 and 100 µM) increased the expression of OATP1B1, acting through FXR, PXR and LXRa. Progesterone (10 and 100 µM) decreased the expression of OATP1B1 (10 and 100 µM) and adopted orphan receptors are not involved in this process. The obtained results have important practical significance and determine ways for targeted regulation of the transporter, in particular in cancer.

6.
Int Immunopharmacol ; 124(Pt A): 110845, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37690241

RESUMEN

Orphan receptors constitute a historically varied subsection of a superfamily of nuclear receptors. Nuclear receptors regulate gene expression in response to ligand signals and are particularly alluring therapeutic targets for chronic illnesses. Neuroinflammation and neurodegenerative diseases have been linked to these orphan nuclear receptors. Preclinical and clinical evidence suggests that orphan receptors could serve as future targets in neuroinflammation, such as Parkinson's disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Multiple Sclerosis (MS), and Cerebral Ischemia. Given the therapeutic relevance of certain orphan receptors in a variety of disorders, their potential in neuroinflammation remains unproven. There is substantial evidence that ligand-activated transcription factors have great promise for preventing neurodegenerative and neurological disorders, with certain orphan nuclear receptors i.e., PPARγ, NR4As, and orphan GPCRs holding particularly high potential. Based on previous findings, we attempted to determine the contribution of PPAR, NR4As, and orphan GPCRs-regulated neuroinflammation to the pathogenesis of these disorders and their potential to become novel therapeutic targets.

7.
Nutrients ; 15(18)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37764703

RESUMEN

Obesity is a known risk factor for metabolic diseases and is often associated with chronic inflammation in adipose tissue. We previously identified the polyethoxylated flavonoid Nobiletin (NOB) as a circadian clock modulator that directly binds to and activates the ROR receptors in the core oscillator, markedly improving metabolic fitness in obese mice. Here, we show that NOB enhanced the oscillation of core clock genes in differentiated 3T3-L1 adipocytes, including ROR target genes such as Bmal1, Cry1, Dec1, and Dec2. NOB inhibited lipid accumulation in 3T3-L1 and SVF cells, concomitant with the dysregulated circadian expression of adipogenic differentiation-related genes including Cebpb, Pparg, Lpl, Scd1, and Fas. Importantly, RORα/RORγ double knockdown in 3T3-L1 cells (Ror DKD) significantly attenuated the effects of NOB on circadian gene expression and lipid accumulation. Furthermore, whereas NOB upregulated the expression of IκBα, a target of RORs, to inhibit NF-κB activation and proinflammatory cytokine expression, Ror DKD cells exhibited a heightened activation of the NF-κB pathway, further indicating a requisite role of RORs for NOB efficacy in adipocytes. Together, these results highlight a significant regulatory function of the NOB-ROR axis in the circadian expression of clock and clock-controlled genes in adipocytes, thereby governing adipogenic differentiation, lipogenesis, and inflammation.


Asunto(s)
Adipocitos , Flavonas , FN-kappa B , Animales , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa , Adipocitos/metabolismo , Inflamación , Lípidos , Células 3T3-L1
8.
Adv Exp Med Biol ; 1415: 327-332, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440052

RESUMEN

The retinoic acid receptor-related orphan receptors (RORs) are ligand-mediated transcription factors with important biological roles in regulating circadian rhythms, metabolism, immunity, angiogenesis, inflammation, and development. They belong to the superfamily of nuclear receptors and include three family members: RORα, RORß, and RORγ. Currently identified ROR ligands include cholesterol and cholesterol derivatives for RORα and RORγ, and stearic acid and all-trans retinoic acid for RORß. Aberrant signaling of the RORs is involved in the pathogenesis of several human diseases including autoimmune diseases, metabolic disorders, and certain cancers. In the eye, RORs regulate normal development of the lens and the retina, and also contribute to potentially blinding eye diseases, especially retinal vascular diseases. Here, we review the role of RORs in eye development and disease to highlight their potential as druggable targets for therapeutic development in retinal vascular and degenerative diseases.


Asunto(s)
Neoplasias , Receptores de Ácido Retinoico , Humanos , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Factores de Transcripción , Tretinoina , Neoplasias/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares
9.
J Mol Graph Model ; 123: 108529, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37263157

RESUMEN

The molecular clock is vital for regulating circadian rhythms in various physiological processes, and its dysregulation is associated with multiple diseases. As such, the use of small molecule modulators to regulate the molecular clock presents a promising therapeutic approach. In this study, we generated a homology model of the human circadian locomotor output cycles kaput (CLOCK) protein to evaluate its ligand binding sites. Using molecular docking, we obtained further insights into the binding mode of the control compound CLK8 and explored a selection of dietary compounds. Our investigation of dietary compounds was guided by their potential interactions with the retinoic acid-related orphan receptors RORα/γ, which are involved in circadian regulation. Through the molecular similarity and docking analyses, we identified oleanolic acid demethyl, 3-epi-lupeol, and taraxasterol as potential ROR-interacting compounds. These compounds may exert therapeutic effects through their modulation of RORα/γ activity and subsequently influence the molecular clock. Overall, our study highlights the potential of small molecule modulators in regulating the molecular clock and the importance of exploring dietary compounds as a source of such modulators. Our findings also provide insights into the binding mechanisms of CLK8 and shed light on potential compounds that can interact with RORs to regulate the molecular clock. Future investigations could focus on validating the efficacy of these compounds in modulating the molecular clock and their potential use as therapeutic agents.


Asunto(s)
Relojes Circadianos , Humanos , Relojes Circadianos/fisiología , Simulación del Acoplamiento Molecular , Ritmo Circadiano/fisiología , Sitios de Unión , Ligandos
10.
Med Chem ; 19(9): 838-847, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37038675

RESUMEN

GPCR superfamily, the largest known family of membrane receptors, consists of six classes from A to F. GPR18 and GPR55, δ-branch of A class, had been reported to have no confirmed endogenous ligand and were named as "orphan receptors". Previous studies suggest that both GPR18 and GPR55 are possibly related to the migration and proliferation of cancer cells, macrophages and other inflammation-associated immune cells. Thus, they may be potential targets for inflammation, cancer and analgesia therapy. In this paper, we aimed to summarize the chemical structures and bioactivities of the agonists and antagonists of GPR18 and GPR55; moreover, we have briefly discussed the challenges and future perspectives in this field. This review will be beneficial for further design and synthesis of efficient agonists and antagonists towards GPR18 and GPR55- related disease treatment.


Asunto(s)
Inflamación , Receptores Acoplados a Proteínas G , Humanos , Receptores de Cannabinoides , Ligandos
11.
Curr Pharm Biotechnol ; 24(12): 1489-1503, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36740804

RESUMEN

BACKGROUND: Esophageal cancer (EC), including esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC), is a highly prevalent malignancy that occurs predominantly in the Asian region and is related to ethnicity, genetics, diet, and lifestyle. The nuclear receptor (NR) superfamily consists of 48 members of the human body. It is a collection of a large class of transcription factors, including Peroxisome proliferator-activated receptors (PPARs), Farnesol X receptor (FXR), Vitamin D receptor (VDR), Retinoic acid receptor (RAR), Pregnane X receptor (PXR), Androgen receptor (AR) and so on. Several NRs have been detected as oncogenes or tumor suppressors in EC progression. OBJECTIVES: NRs are associated with the progression of many cancers, including EC. Some NRs, such as PPARs and FXR, play an important role in EC. Studying the molecular mechanism of NRs in EC is helpful for further understanding the development of EC. Preclinical research and development of small molecule compound drugs targeting NRs have provided new ideas for the potential targeted therapy of EC. METHODS: This review summarizes the studies on NRs in EC in recent years, mainly including in vitro cell experiments and in vivo animal experiments. RESULTS: NRs influence EC progress in a variety of ways. They mainly affect the proliferation, migration and drug resistance of EC cells by affecting key cancer cell signaling pathways. Activation or inhibition of NRs inhibits or promotes EC progression, depending on EC types and tumor stages. Preclinical studies mainly focus on the development of small molecule drugs for targeting NRs (such as PPARγ agonists, PPARδ inhibitors, and FXR agonists), and agonists or inhibitors of NRs will become a potential therapeutic regimen for EC. CONCLUSION: The studies on the roles of NRs in EC have provided a theoretical basis for us to further understand the pathogenesis of EC and develop potential therapeutic drugs targeting NRs for the treatment of different diseases.


Asunto(s)
Adenocarcinoma , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Animales , Humanos , Neoplasias Esofágicas/tratamiento farmacológico , Receptores Activados del Proliferador del Peroxisoma , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Factores de Transcripción
12.
Life (Basel) ; 12(11)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36362842

RESUMEN

BACKGROUND: Chronic or low-grade inflammation is a process where various immune cells are recruited from the periphery into adipose tissue. This event gives rise to localised inflammation, in addition to having a close interaction with cardiometabolic pathologies where the mediation of orphan receptors is observed. The aim of this study was to analyse the participation of the orphan receptors GPR21, GPR39, GPR82 and GPR6 in a chronic inflammatory process in 3T3-L1 cells. The 3T3-L1 cells were stimulated with TNF-α (5 ng/mL) for 60 min as an inflammatory model. Gene expression was measured by RT-qPCR. RESULTS: We showed that the inflammatory stimulus of TNF-α in adipocytes decreased the expression of the orphan receptors GPR21, GPR26, GPR39, GPR82 and GPR6, which are related to low-grade inflammation. CONCLUSIONS: Our results suggest that GPR21 and GPR82 are modulated by glycine, it shows a possible protective role in the presence of an inflammatory environment in adipocytes, and they could be a therapeutic target to decrease the inflammation in some diseases related to low-grade inflammation such as diabetes, obesity and metabolic syndrome.

13.
Molecules ; 27(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36080415

RESUMEN

Recently, the scientific community has started to focus on the neurogenic potential of cannabinoids. The phytocompound cannabidiol (CBD) shows different mechanism of signaling on cannabinoid receptor 1 (CB1), depending on its concentration. In this study, we investigated if CBD may induce in vitro neuronal differentiation after treatment at 5 µM and 10 µM. For this purpose, we decided to use the spinal cord × neuroblastoma hybrid cell line (NSC-34) because of its proliferative and undifferentiated state. The messenger RNAs (mRNAs) expression profiles were tested using high-throughput sequencing technology and Western blot assay was used to determine the number of main proteins in different pathways. Interestingly, the treatment shows different genes associated with neurodifferentiation statistically significant, such as Rbfox3, Tubb3, Pax6 and Eno2. The CB1 signaling pathway is responsible for neuronal differentiation at 10 µM, as suggested by the presence of p-ERK and p-AKT, but not at 5 µM. A new correlation between CBD, neurodifferentiation and retinoic acid receptor-related orphan receptors (RORs) has been observed.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabidiol/metabolismo , Cannabidiol/farmacología , Cannabinoides/farmacología , Sistema de Señalización de MAP Quinasas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Transducción de Señal
14.
Biomedicines ; 10(9)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36140177

RESUMEN

The steroid sapogenin diosgenin is a well-known natural product with a plethora of described pharmacological activities including the amelioration of T helper 17 (Th17)-driven pathologies. However, the exact underlying mode of action of diosgenin leading to a dampened Th17 response is still largely unknown and specific molecular targets have yet to be identified. Here, we show that diosgenin acts as a direct ligand and inverse agonist of the nuclear receptor retinoic acid receptor (RAR)-related orphan receptor (ROR)α and RORγ, which are key transcription factors involved in Th17 cell differentiation and metabolism. IC50 values determined by luciferase reporter gene assays, employing constructs for either RORγ-Gal4 fusion proteins or full length receptors, were in the low micromolar range at around 2 µM. To highlight the functional consequences of this RORα/γ inverse agonism, we determined gene expression levels of important ROR target genes, i.e., IL-17A and glucose-6-phosphatase, in relevant cellular in vitro models of Jurkat T and HepG2 cells, respectively, by RT-qPCR (reverse transcription quantitative PCR). Thereby, it was shown that diosgenin leads to a dose-dependent decrease in target gene expressions consistent with its potent cellular ROR inverse agonistic activity. Additionally, in silico dockings of diosgenin to the ROR ligand-binding domain were performed to determine the underlying binding mode. Taken together, our results establish diosgenin as a novel, direct and dual-selective RORα/γ inverse agonist. This finding establishes a direct molecular target for diosgenin for the first time, which can further explain reported amendments in Th17-driven diseases by this compound.

15.
Front Mol Biosci ; 9: 873777, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495622

RESUMEN

GPCRs transform extracellular stimuli into a physiological response by activating an intracellular signaling cascade initiated via binding to G proteins. Orphan G protein-coupled receptors (GPCRs) hold the potential to pave the way for development of new, innovative therapeutic strategies. In this review we will introduce G protein-coupled receptor 143 (GPR143), an enigmatic receptor in terms of classification within the GPCR superfamily and localization. GPR143 has not been assigned to any of the GPCR families due to the lack of common structural motifs. Hence we will describe the most important motifs of classes A and B and compare them to the protein sequence of GPR143. While a precise function for the receptor has yet to be determined, the protein is expressed abundantly in pigment producing cells. Many GPR143 mutations cause X-linked Ocular Albinism Type 1 (OA1, Nettleship-Falls OA), which results in hypopigmentation of the eyes and loss of visual acuity due to disrupted visual system development and function. In pigment cells of the skin, loss of functional GPR143 results in abnormally large melanosomes (organelles in which pigment is produced). Studies have shown that the receptor is localized internally, including at the melanosomal membrane, where it may function to regulate melanosome size and/or facilitate protein trafficking to the melanosome through the endolysosomal system. Numerous additional roles have been proposed for GPR143 in determining cancer predisposition, regulation of blood pressure, development of macular degeneration and signaling in the brain, which we will briefly describe as well as potential ligands that have been identified. Furthermore, GPR143 is a promiscuous receptor that has been shown to interact with multiple other melanosomal proteins and GPCRs, which strongly suggests that this orphan receptor is likely involved in many different physiological actions.

16.
Artículo en Inglés | MEDLINE | ID: mdl-35021931

RESUMEN

Orphan receptors have unknown endogenous ligands, are expressed in different tissues, and participate in various diseases such as diabetes, hypertension and cancer. We studied the expression profiles of GPR21, GPR39, GPR135 and GPR153 orphan receptors in several tumour tissues. Cervical, breast, skin, prostate, and astrocytoma tissues were analysed for orphan receptor gene expression using Real time PCR analysis. GPR39 is over-expressed in cervical and prostate cancer tissues, and GPR21 and GPR135 receptors are significantly decreased in cervical, breast, skin, prostate, and astrocytoma tissues, when compared with healthy human fibroblasts. In conclusion, GPR21 and GPR135 receptor gene expression is reduced in cancerous tissues. GPR39 may have a role in the development and evolution of cervical and prostate cancer. These data suggest these receptors may be alternative molecules for new diagnostic approaches, and the design of novel therapeutics against oncological pathologies.


Asunto(s)
Neoplasias , Receptores Acoplados a Proteínas G , Humanos , Ligandos , Masculino , Neoplasias/genética , Receptores Acoplados a Proteínas G/genética
17.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-934403

RESUMEN

Objective:To detect the expression of receptor tyrosine kinase-like orphan receptor 1 (ROR1) antigen in chronic lymphocytic leukemia (CLL) and evaluate its diagnostic value and explore its correlation with the abnormalities of genetics and molecular biology.Methods:All of 209 newly diagnosed B-cell chronic lymphoproliferative disorders (B-CLPD) patients who were admitted to the First Affiliated Hospital of Nanjing Medical University (Jiangsu Provincial People′s Hospital) from November 2020 to November 2021 were collected retrospectively, including 70 cases of CLL with typical phenotype, 16 cases of CLL with atypical phenotype, 14 cases of MCL, and 109 cases of other types of B-CLPD. Multi-parameter flow cytometry (FCM) was used to detect the expression levels of ROR1 in tumor cells of 209 patients. And then the diagnostic value of ROR1 in CLL patients and its correlation with the genetic and molecular biological abnormalities were analyzed by c2 test and fourfold table assessment.Results:The positive expression rate of ROR1 in CLL patients was significantly higher than that in non-CLL patients (78%>11%, P<0.001); there was no significant difference of ROR1 expression between typical phenotype CLL and atypical phenotype CLL (81%>63%, P>0.05). The positive expression rate of ROR1 in atypical phenotype CLL was significantly higher than that in MCL (63%>21%, P<0.05). Additionally, there was significant difference in detection rate of chromosomal abnormalities between ROR1 +CLL group and ROR1 -CLL group. The detection rate of complex karyotype in ROR1 +CLL group was higher than that in ROR1 -CLL group (34%>14%, P<0.05). The CLL patients over 60 years old had higher ROR1 positive rate ( P<0.05). Conclusions:ROR1 can be helpful in the diagnosis of CLL, especially in the differential diagnosis of atypical phenotype CLL, MCL and other types of B-CLPD. Patients with ROR1 positive expression were older and more likely to detect complex chromosomal karyotypes.

18.
J Oral Maxillofac Pathol ; 25(1): 105-109, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34349419

RESUMEN

CONTEXT: The receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a transmembrane protein of the receptor tyrosine kinase family. The expression of ROR1 has been linked to cancers. AIMS: This study aimed to investigate the expression of ROR1 in oral squamous cell carcinoma (OSCC). SETTINGS AND DESIGN: This prospective observational study was conducted at a tertiary referral center for treatment of oral carcinoma from November 2013 to December 2016. SUBJECTS AND METHODS: One-step quantitative reverse transcription-polymerase chain reaction (30 oral cancer tissues and ten normal oral tissue samples) was performed to characterize the expression of the ROR1 gene in oral cancer. STATISTICAL ANALYSIS USED: Analyses of all tumor samples were carried out at least twice, and the mean value was calculated. The differences in ROR1 messenger RNA (mRNA) expression between OSCC tissue and nontumorous gingival tissue was statistically analyzed using Mann-Whitney U-test. The correlations between the clinicopathological parameters and ROR1 mRNA expression were analyzed using Kruskal-Wallis test χ2 value. RESULTS: There were 17, 5, 3 and 1 cases of OSCC of buccal mucosa, tongue and lower alveolus lip, respectively. Nearly 88.5% of cases had a history of tobacco consumption. The most common OSCC type was T2N1M0. There was no difference in ROR1 fold change between controls and cases (P = 0.06), but there was a trend for downregulation of ROR1 expression from controls to cases. Subgroup analysis revealed the downregulation of ROR1 expression in controls versus Grade II that was significant (P = 0.04). CONCLUSIONS: There was no change in the expression of ROR1 between cases and controls. A study involving a larger sample size needs to be formulated and conducted for investigating the relation between expression and regulation of ROR1 in OSCC.

19.
Gene Rep ; 24: 101270, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34250314

RESUMEN

SARS-CoV-2 virus, the main culprit for COVID-19 disaster, has triggered a gust of curiosity both in the mechanism of action of this infection as well as potential risk factors for disease generation and regimentation. The prime focus of the present review, which is basically a narrative one, is in utilizing the current concepts of vitamin D3 as an agent with myriad functions, one of them being immunocompetence and a promising weapon for both innate and adaptive immunity against COVID-19 infection. Some of the manifestations of SARS-CoV-2 virus such as Acute Respiratory Distress Syndrome (ARDS) overlap with the pathophysiological effects that are overcome due to already established role of vitamin D3 e.g., amelioration of cytokine outburst. Additionally, the cardiovascular complications due to COVID-19 infection may also be connected to vitamin D3 levels and the activity of its active forms. Eventually, we summarise the clinical, observational and epidemiological data of the respiratory diseases including COVID-19 disease and try to bring its association with the potential role of vitamin D3, in particular, the activity of its active forms, circulating levels and its supplementation, against dissemination of this disease.

20.
J Recept Signal Transduct Res ; 41(6): 558-565, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33121311

RESUMEN

Hypertension is a disease, which in spite of existing treatments continues to have high morbidity and mortality, which suggests that there are other mechanisms involved in this pathology. In this sense, the orphan receptors are G protein-coupled receptor associated with various pathologies such as GPR99 which has been linked to mice develop left ventricular hypertrophy induced by blood pressure overload while GPR107 with patients with idiopathic pulmonary arterial hypertension. For this reason, the aim of this work was to study if the expression of the orphan receptors GPR99 and GPR107 are modified by arterial hypertension. Male SHR and WKY rats of 6-8 and 10-12 weeks old were used. The weight, systolic blood pressure and heart rate were measured, as well as the mRNA of the receptors GPR99 and GPR107 in the aorta, kidney, heart and brain by RT-PCR, also was realized an in silico analysis to predict which G protein could be coupled the orphan receptor GPR107. Our results showed that receptors GPR99 and GPR107 are expressed in the analyzed tissues and their expression profile tends to change at different ages and with the development of hypertension, for the other hand, the bioinformatics analysis for GPR107 showed that is coupled to Gi protein. Therefore, we do not rule out that GPR99 and GPR107 could be involved in the pathophysiology of hypertension and could be used as targets therapeutic in hypertension.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Hipertensión/patología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P2/metabolismo , Animales , Presión Sanguínea , Hipertensión/genética , Hipertensión/metabolismo , Masculino , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptores Acoplados a Proteínas G/genética , Receptores Purinérgicos P2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA