Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Comput Chem ; 44(31): 2424-2436, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37638684

RESUMEN

The alternant polycyclic aromatic hydrocarbon pyrene has photophysical properties that can be tuned with different donor and acceptor substituents. Recently, a D (donor)-Pyrene (bridge)-A (acceptor) system, DPA, with the electron donor N,N-dimethylaniline (DMA), and the electron acceptor trifluoromethylphenyl (TFM), was investigated by means of time-resolved spectroscopic measurements (J. Phys. Chem. Lett. 2021, 12, 2226-2231). DPA shows great promise for potential applications in organic electronic devices. In this work, we used the ab initio second-order algebraic diagrammatic construction method ADC(2) to investigate the excited-state properties of a series of analogous DPA systems, including the originally synthesized DPAs. The additionally investigated substituents were amino, fluorine, and methoxy as donors and nitrile and nitro groups as acceptors. The focus of this work was on characterizing the lowest excited singlet states regarding charge transfer (CT) and local excitation (LE) characters. For the DMA-pyrene-TFM system, the ADC(2) calculations show two initial electronic states relevant for interpreting the photodynamics. The bright S1 state is locally excited within the pyrene moiety, and an S2 state is localized ~0.5 eV above S1 and characterized as a donor to pyrene CT state. HOMO and LUMO energies were employed to assess the efficiency of the DPA compounds for organic photovoltaics (OPVs). HOMO-LUMO and optical gaps were used to estimate power conversion and light-harvesting efficiencies for practical applications in organic solar cells. Considering the systems using smaller D/A substituents, compounds with the strong acceptor NO2 substituent group show enhanced CT and promising properties for use in OPVs. Some of the other compounds with small substituents are also found to be competitive in this regard.

2.
Heliyon ; 8(5): e09515, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35647356

RESUMEN

With the aim of verifying the optical properties of the systems formed by poly(3-methylthiophene) (P3MT) and poly(3-octylthiophene) (P3OT) on platinum (Pt) for use in organic photovoltaic device applications, electrochemical preparations of different interfaces with poly(3-alkylthiophenes) (P3ATs), synthesized both with 18 °C and without temperature control, were compared. These interfaces were prepared both as blends (Pt/P3MT:P3OT) and as layered films (Pt/P3MT/P3OT and Pt/P3OT/P3MT). Electrochemical impedance spectroscopy (EIS) was used to characterize the systems, and based on Bode-Phase diagrams, it was possible to monitor the stabilization of radical cation and dication segments of the thiophene ring. The findings corroborated previous studies by electrochemical spectroscopy and using in situ Raman spectroscopy under the same experimental conditions. We were able to verify the effects of experimental variables, such as synthesis temperature and different kinds of deposition. Temperature was found to be an extremely important factor in synthesis, since films synthesized at 18 °C favored the stabilization of radical cation segments in the polymer matrix, and layered deposition also favored the stabilization of these segments, since the layer closest to the electrode can act as an induction layer for the stability of radical cation segments in the system. Photoluminescence spectroscopy was used to verify the optical properties of the interfaces, in which occur the contributions of three segments in the P3ATs matrix. Thus, it has been demonstrated through photoluminescence decay time that the relative amount of radical cation and dication segments in the polymer matrix affects the lifetime of these segments in the different materials prepared, due to emission effects for these systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA