Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros











Intervalo de año de publicación
1.
Bioresour Technol ; 408: 131219, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111399

RESUMEN

Microalgal-bacterial consortia (MBC) and microalgal consortia (MC) were cultivated with primary and final treated wastewaters, respectively, using a fluidised carrier. This study determines the main factors and operations required for flocculating suspended MBC (SMBC) and MC (SMC) in cultures. The flocculated SMBC and SMC with good settleability require the detachment of thickened MBC or MC on the carrier and suppressed SMBC and SMC formation by the original MBC and MC grown in the culture. Flocculation was achieved by controlling the carrier and culture replacements. A carrier replacement ratio of 0.04 d-1 and a culture replacement ratio of 0.95 d-1 minimised the dissolved organic carbon (15.3 mg-C/L) and SMBC residue (7.3 mg/L). Thus, treating primary treated wastewater with MBC formed using fluidised carriers is a promising strategy, enabling the use of whole cells in MBC for renewable energy production.


Asunto(s)
Bacterias , Floculación , Microalgas , Aguas Residuales , Purificación del Agua , Microalgas/metabolismo , Microalgas/crecimiento & desarrollo , Aguas Residuales/microbiología , Purificación del Agua/métodos , Bacterias/metabolismo , Consorcios Microbianos/fisiología
2.
NanoImpact ; 35: 100525, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39134304

RESUMEN

The ubiquitousness of microplastics (<5 mm) has become a pressing environmental concern globally due to the extensive use of plastics. Microplastics have been well-studied in aquatic environments but not well-characterized in soils. Present analytical processes to quantify microplastics accurately in soil samples are quite challenging and require improved and validated analytical steps to eliminate the obscurities and biases. We aimed to develop an effective method for the extraction and quantification of microplastics from soil samples. Different ratios of low-(NaCl) and high-density solutions (ZnCl2/ NaBr) were tested to determine the most efficient combination for density-dependent separation of microplastics from soil. The combination of low- (1:6) and high-density (1:3) solutions {as weight of soil(g)/volume of density solution(ml)} accounted for 95% recovery of the spiked microplastic particles from soil samples. Likewise, different soil-to-solution ratios of H2O2 were tested for the removal of soil organic matter with heating and non-heating steps. Prior removal of organic matter from soil samples achieved a clear supernatant that facilitated 99% recovery of microplastic particles. The validation of individually spiked microplastic particles of small (10-100 µm) and large scale (100-5000 µm) resulted in recovery ranging from 88 to 99%. A validated modified method with prior digestion followed by density-dependent separation was further tested using the field samples with microplastic contamination. The microplastics of different shapes, sizes, colours and polymeric compositions were reported efficiently and well characterized in the field-collected soil samples using this method.


Asunto(s)
Microplásticos , Contaminantes del Suelo , Suelo , Microplásticos/análisis , Contaminantes del Suelo/análisis , Contaminantes del Suelo/aislamiento & purificación , Suelo/química , Monitoreo del Ambiente/métodos , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Plásticos/análisis , Plásticos/química
3.
Sci Rep ; 14(1): 15221, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956104

RESUMEN

Municipal wastewater treatment systems use the chemical oxygen demand test (COD) to identify organic contaminants in industrial effluents that impede treatment due to their high concentration. This study reduced the COD levels in tannery wastewater using a multistage treatment process that included Fenton oxidation, chemical coagulation, and nanotechnology based on a synthetic soluble COD standard solution. At an acidic pH of 5, Fenton oxidation reduces the COD concentration by approximately 79%. It achieves this by combining 10 mL/L of H2O2 and 0.1 g/L of FeCl2. Furthermore, the author selected the FeCl3 coagulant for the coagulation process based on the best results of comparisons between different coagulants. At pH 8.5, the coagulation dose of 0.15 g/L achieved the maximum COD removal efficiency of approximately 56.7%. Finally, nano bimetallic Fe/Cu was used to complete the degradation and adsorption of the remaining organic pollutants. The XRD, SEM, and EDX analyses proved the formation of Fe/Cu nanoparticles. A dose of 0.09 g/L Fe/Cu NPs, 30 min of contact time, and a stirring rate of 200 rpm achieve a maximum removal efficiency of about 93% of COD at pH 7.5. The kinetics studies were analyzed using pseudo-first-order P.F.O., pseudo-second-order P.S.O., and intraparticle diffusion models. The P.S.O. showed the best fit among the kinetic models, with an R2 of 0.998. Finally, the authors recommended that technique for highly contaminated industrial effluents treatment for agriculture or industrial purposes.

4.
J Environ Manage ; 362: 121351, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38838535

RESUMEN

In this study, the growth of yeast and yeast-like fungi in the liquid digestate from vegetable wastes was investigated in order to remove nutrients and organic pollutants, and for their application as co-culture members with green microalgae. The studied yeast strains were characterized for their assimilative and enzymatic profiles as well as temperature requirements. In the first experimental stage, the growth dynamics of each strain were determined, allowing to select the best yeasts for further studies. In the subsequent stage, the ability of selectants to remove organic pollutants was assessed. Different cultivation media containing respectively 1:3, 1:1, 3:1 vol ratio of liquid digestate and the basal minimal medium were used. Among all tested yeast strains, Rhodotorula mucilaginosa DSM 70825 showed the most promising results, demonstrating the highest potential for removing organic substrates and nutrients. Depending on the medium, this strain achieved 50-80% sCOD, 45-60% tVFAs, 21-45% TN, 33-52% PO43- reduction rates. Similar results were obtained for the strain Candida sp. OR687571. The high nutrient and organics removal efficiency by these yeasts could likely be linked to their ability to assimilate xylose (being the main source of carbon in the liquid digestate). In culture media containing liquid digestate, both yeast strains achieved good viability and proliferation potential. In the liquid digestate medium, R. mucilaginosa and Candida sp. showed vitality at the level of 51.5% and 45.0%, respectively. These strains seem to be a good starting material for developing effective digestate treatment strategies involving monocultures and/or consortia with other yeasts or green microalgae.


Asunto(s)
Técnicas de Cocultivo , Microalgas , Levaduras , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo , Levaduras/metabolismo , Levaduras/crecimiento & desarrollo , Rhodotorula/metabolismo , Rhodotorula/crecimiento & desarrollo , Nutrientes/metabolismo , Biodegradación Ambiental , Candida/crecimiento & desarrollo , Candida/metabolismo
5.
Front Bioeng Biotechnol ; 12: 1338547, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468686

RESUMEN

In low-middle income countries (LMIC), wastewater treatment using native microalgal-bacterial consortia has emerged as a cost-effective and technologically-accessible remediation strategy. This study evaluated the effectiveness of six microalgal-bacterial consortia (MBC) from the Ecuadorian Amazon in removing organic matter and nutrients from non-sterilized domestic wastewater (NSWW) and sterilized domestic wastewater (SWW) samples. Microalgal-bacterial consortia growth, in NSWW was, on average, six times higher than in SWW. Removal rates (RR) for NH4 +- N and PO4 3--P were also higher in NSWW, averaging 8.04 ± 1.07 and 6.27 ± 0.66 mg L-1 d-1, respectively. However, the RR for NO3 - -N did not significantly differ between SWW and NSWW, and the RR for soluble COD slightly decreased under non-sterilized conditions (NSWW). Our results also show that NSWW and SWW samples were statistically different with respect to their nutrient concentration (NH4 +-N and PO4 3--P), organic matter content (total and soluble COD and BOD5), and physical-chemical parameters (pH, T, and EC). The enhanced growth performance of MBC in NSWW can be plausibly attributed to differences in nutrient and organic matter composition between NSWW and SWW. Additionally, a potential synergy between the autochthonous consortia present in NSWW and the native microalgal-bacterial consortia may contribute to this efficiency, contrasting with SWW where no active autochthonous consortia were observed. Finally, we also show that MBC from different localities exhibit clear differences in their ability to remove organic matter and nutrients from NSWW and SWW. Future research should focus on elucidating the taxonomic and functional profiles of microbial communities within the consortia, paving the way for a more comprehensive understanding of their potential applications in sustainable wastewater management.

6.
Environ Pollut ; 328: 121551, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37023885

RESUMEN

This work aims to explore the effects of the magnetic polystyrene particles (MPS) on contaminants removal of the high emulsified oil wastewater. 26 days intermittently-aerated progress illustrated that COD removal efficiency and the resistance to the shock loading was promoted in the presence of MPS. Gas chromatography (GC) results also indicated that MPS enhanced the number of organic species reduced. According to the cyclic voltammetry test, conductive MPS appeared special redox performance which was considered could to facilitate the extracellular electron transfer. Furthermore, MPS dosing accelerated the electron-transporting system (ETS) activity by 24.91% compared the control. Based on the superior performance above, the conductivity of MPS is considered to be responsible for the enhanced organic removal efficiency. Moreover, the high-throughput sequencing displayed that electroactive Cloacibacterium and Acinetobacter accounted for a higher proportion in the MPS reactor. Additionally, Porphyrobacter and Dysgonomonas which were capable of degrading organics were also enriched more by MPS. To sum up, MPS is a promising additive to enhance the organic substances removal for the high emulsified oil wastewater.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Poliestirenos , Biopelículas , Reactores Biológicos , Fenómenos Magnéticos
7.
Sci Total Environ ; 854: 158742, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36108872

RESUMEN

Losses of C and N from the forest floor and top 20-cm of soil were estimated following separate severe wildfires at two Long-Term Soil Productivity sites in the Sierra Nevada of California, USA. Experimental treatments applied 20 years prior to the wildfires included factorial combinations of 1) organic matter (OM) removal following clear-cut harvesting (SO, stem only harvest, WTH, whole-tree harvest, and WTH + FF, WTH plus the forest floor removal), 2) soil compaction (three levels of intensity), and 3) with and without understory vegetation control. Wildfires caused complete losses of the forest floor in all treatments and also oxidized varying portions of OM in the topsoil. As such, pre-fire forest floor measures were used as an estimate of forest floor C and N loss, and post-fire soil measures of C and N were compared to pre-fire soil data to estimate of mineral soil losses. Averaged over all treatments, the less-productive site that also had lesser accumulations of detritus (Wallace) lost 35.1 Mg C ha-1, or 25 % of its original C stores, while the more-productive site with greater detritus (Rogers) lost 18.4 Mg C ha-1, or 20 % of its original. The SO treatments that left harvest residue on site ended up with much greater losses of C: 36 % versus 15 and 17 % for WTH and WTH + FF, respectively. The SO also yielded the largest losses (25-30 %) of C in the top 10-cm of soil. The other treatments had smaller or inconsistent effects (understory vegetation control) or no effect (soil compaction). Our results suggest that potential benefits from SO by leaving residue on site to soil C and N accumulation can also be readily eliminated by wildfire which commonly occurs at these fire-prone forest ecosystems.

8.
Sci Total Environ ; 853: 158642, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36096229

RESUMEN

Microplastic pollution is recognized as an emerging global issue; however, no standardized method for the extraction of these pollutants from the environment currently exists and existing methods are ineffective for specific environmental matrices. An appropriate organic matter removal method is essential for the extraction of microplastics from organic-rich sludge to minimize interference during their identification and enhance compatibility of the identification steps. The present study aimed to establish an effective technique for the digestion of organic matter-rich sludge using hydrogen peroxide and Fenton's reagent at varying temperatures, times, and concentrations of an iron catalyst. The organic matter removal efficiency of the five protocols utilized varied from 81.5 % to 87.1 %. Polymers such as polyvinyl chloride (PVC), high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP), and polystyrene (PS) retained most of their physical and chemical properties after the treatments, with minor changes in the surface area, weight, and FTIR spectra properties. Polyethylene terephthalate (PET), PET fiber, polyamide (PA) fiber, and polymethyl methacrylate (PMMA) fiber were significantly degraded via treating with H2O2 at 50 °C for 24 h. Protocol 4, treating with Fenton's reagent (H2O2 (30 %) + (0.05 M) FeSO4.7H2O) at 50 °C for 1 h is proposed as a rapid and effective method for the removal of organic matter from sludge. In addition to its rapidity, this method minimally impacts most polymers, and its high organic matter removal efficiency is associated with a significant reduction of suspended solids in sludge. The present study provides a validated approach that facilitates as an effective organic removal step during the extraction of MPs in sludge.


Asunto(s)
Contaminantes Ambientales , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Microplásticos , Peróxido de Hidrógeno/química , Plásticos , Polietileno , Cloruro de Polivinilo , Polimetil Metacrilato , Poliestirenos , Polipropilenos , Tereftalatos Polietilenos , Nylons , Hierro/química
9.
J Environ Manage ; 322: 116085, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36063693

RESUMEN

White-rot fungi (WRF) have the ability to synthetize extracellular enzymes that could degrade recalcitrant pollutants. The aim of this work was to evaluate the use of P. chrysosporium to treat a biologically and physically pre-treated landfill leachate which high load of refractory compounds (COD>1000 mg/L, BOD5<50 mg/L) in order to reduce COD and colour. Batch tests were carried out at 26 °C and 135 rpm for 15 days. The soluble chemical oxygen demand (sCOD), soluble biological oxygen demand (sBOD5) and colour, as well as the lignin peroxidase (LiP) and manganese peroxidase (MnP) enzymatic activities were analysed. Besides, the effects of different operating conditions, i.e., pH control, permeate dilution and supplementation, on treatment efficacy were investigated. The control of pH was shown to be key for fungal treatment. In addition, it was found that the addition of carbon and nitrogen sources improved the enzymatic synthesis and the removals of sCOD and colour. Data here obtained open the possibility of using fungi for reducing the amount of recalcitrant pollutants still present in treated landfill leachates or similar effluents.


Asunto(s)
Contaminantes Químicos del Agua , Análisis de la Demanda Biológica de Oxígeno , Carbono , Nitrógeno/química , Contaminantes Químicos del Agua/química
10.
Environ Sci Technol ; 56(17): 11910-11921, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35980850

RESUMEN

A comprehensive understanding of tire and road wear particles (TRWPs) and their detection and quantification in soils is still challenged by the lack of well-set standardized methods, inherent technological inconsistencies, and generalized protocols. Our protocol includes soil sampling, size separation, and organic matter removal by using hydrogen peroxide followed by density separation and analysis. In this context, roadside soil samples from different sites in Kansas and Ohio, USA, were collected and analyzed. Tire cryogrinds analogous to TRWPs were used to evaluate various density separation media, and collected particles more than 1 mm in size were then subjected to infrared spectroscopy (IR), thermogravimetric analysis (TGA), and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX) to confirm TRWP presence. Particles smaller than 1 mm were Soxhlet extracted, followed by gas chromatography-mass spectrometry (GC-MS) to validate the presence of tire-related intermediates. SEM-EDX validated the presence of elemental combinations (S + Zn/Na) ± (Al, Ca, Mg, K, Si) attributed to tires. Ketones, carboxylic acids, epoxies, cyclohexane, and benzothiazole sulfenamide (BTS) intermediates were the most probable tire-related intermediates observed in the roadside soil samples. Thus, this simple, widely applicable, cost-effective sample preparation protocol for TRWP analysis can assist TRWP research advancement in terrestrial environments.


Asunto(s)
Monitoreo del Ambiente , Suelo , Cromatografía de Gases y Espectrometría de Masas , Kansas , Ohio
11.
Sci Total Environ ; 815: 152941, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007581

RESUMEN

The extraction of microplastics from organic-rich freshwater samples is challenging and limited information is available in the literature. This study aims at developing efficient methods for water volume reduction and organic matter removal in freshwater samples, while focusing on the reduction of the economic and environmental costs, maintaining microplastics integrity and avoiding contamination. For the water volume reduction approach, centrifuging freshwater samples (water, sediment, algae, leaves, driftwood, fish tissue) at different speeds (3500, 6000 rpm) and times (5, 10 min) showed that 3500 rpm for 5 min was efficient to settle the mineral and organic material, while preserving the polymers and showing high microplastic recovering rates (93 ± 6%). These recovery rates were significantly higher than the traditional sieving approach (77 ± 22%). The posterior minimal consumption of reagents resulting from the reduction of water volume helped to reduce the economic and environmental costs of the devised methodology, becoming more aligned with green chemistry principles. For biogenic organic matter removal, four digestion solutions were tested on freshwater samples, namely 10% potassium hydroxide, Fenton reagent (30% H2O2 + Fe(II)), 7% and 10% sodium hypochlorite (NaClO), under 3 periods of time (1, 6 and 15 h), at 50 °C. Both 7% and 10% NaClO showed the highest rates of organic matter removal (86 ± 1% and 90 ± 1%, respectively), after 6 h at 50 °C. Exposure of virgin and aged polymers (polyethylene, polypropylene, polystyrene, polyvinyl chloride, nylon, polyethylene terephthalate) to NaClO showed no weight, visual, surface structure, Fourier transform infrared spectra and carbonyl index changes, except for nylon, although not to an extent that affected its identification. This method resulted in high recovery rates of polymers (92 ± 6%). Thus, 7% NaClO at 50 °C for 6 h (or overnight) may be efficiently used for microplastic analysis in organic-rich freshwater samples.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Agua Dulce , Peróxido de Hidrógeno , Plásticos , Contaminantes Químicos del Agua/análisis
12.
J Environ Manage ; 306: 114501, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35051822

RESUMEN

Processing human urine with clinoptilolite results in a solid phase upon which majority of nutrients are concentrated, which may be used as fertilizer; in addition to a liquid residue to be disposed of which is saline, rich in organics and contains residual nutrients. Despite several work regarding nutrients recovery from human urine, the fate of organic matter in the liquid residue is yet to be revealed. This study aims to investigate the combination of sorption and anaerobic processing (ANA) to accomplish concurrent nutrient recovery, and organic matter removal from hydrolyzed human urine (HHU) for environmental protection. Fixed bed clinoptilolite columns were used for nutrient recovery from HHU and an anaerobic expanded granular sludge bed reactor (AnEGSB) was used for removal of organic matter from residue of the former process. Furthermore, the effluent of AnEGSB was subjected to post treatment using stage-wise sorption to enhance the effluent quality before disposal. Majority of nutrients were removed by the sorption process with 80% of ammonium and almost all of phosphorus. Sorption removed 35% of orgnic matter while ANA was responsible for the rest. Post treatment helped to polish the quality of the AnEGSB effluent to the permissible level of domestic wastewater discharge standards of EU.With the proposed combination, almost 100% of nitrogen and phosphorus were recovered for further use as fertilizer providing benefits for sustainability. Also, 97% of organic matter could be removed from HHU to provide environmental protection, which was accompanied by methane (CH4) production of 0.4 L CH4/day which is equivalent to 0.113 L CH4/g COD removed. Successful implementation of the proposed combination helps improve management of domestic wastewater.


Asunto(s)
Reactores Biológicos , Eliminación de Residuos Líquidos , Anaerobiosis , Humanos , Nitrógeno , Aguas del Alcantarillado , Aguas Residuales
13.
Environ Technol ; 43(12): 1791-1804, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33196379

RESUMEN

One of the expected outcomes of global warming is increased algal and cyanobacterial blooms. Based on its ability to separate algal particles, dissolved air flotation (DAF) is considered as a climate change adaptation technology for water treatment. The feasibility of DAF treatment is often assessed using DAF jar tests; however, they are not particularly good at predicting a full-scale DAF system's turbidity removals. Therefore, our group has developed a more reliable larger-diameter/larger-volume batch apparatus (LB-DAF), which was optimized by comparison with a full-scale DAF plant treating a low turbidity, highly coloured river water (SUVA ∼ 4.3). The objective of this study was to verify that the LB-DAF was capable of simulating full-scale DAF systems treating two significantly different waters. One was water from a large eutrophic bay in Lake Ontario (SUVA ∼2.6) and the second was a river water (SUVA ∼3.5). The turbidity removals achieved by the full-scale DAF systems treating these waters were compared with those for the LB-DAF tests conducted using different flocculation velocity gradients, saturated water pressures, recycle ratios and water depth to diameter ratios. The LB-DAF tests are good predictors of the full-scale DAF turbidity removals, the average difference for the two waters tested were 2% and 6%. The LB-DAF natural organic matter (NOM) removals for both waters differed by less than 1% from that measured at the corresponding treatment plants. In addition, as in our previous LB-DAF study, varying the different LB-DAF operational variables did not have a significant impact on turbidity and NOM removals.


Asunto(s)
Cianobacterias , Purificación del Agua , Floculación , Reciclaje
14.
Environ Pollut ; 292(Pt A): 118306, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34634401

RESUMEN

Slaughter wastewater is an important and wide range of environmental issues, and even threaten human health through meat production. A high efficiency and stability microsphere-immobilized Bacillus velezensis strain was designed to remove organic matter and inhibit the growth of harmful bacteria in process of slaughter wastewater. Bacillus velezensis was immobilized on the surface of sodium alginate (SA)/Polyvinyl alcohol (PVA)/Nano Zinc Oxide (Nano-ZnO) microsphere with the adhesion to bio-carrier through direct physical adsorption. Results indicated that SA/PVA/ZnO and SA/ZnO microspheres could inhibit E.coli growth with adding 0.15 g/L nano-ZnO and not affect Bacillus velezensis strain, and the removal the chemical oxygen demand (COD) rates of SA/PVA/ZnO microsphere immobilized cells are 16.99%, followed by SA/ZnO (13.69%) and free bacteria (7.61%) from 50% concentration slaughter wastewater within 24 h at 37 °C, pH 7.0, and 120 rpm, a significant difference was found between the microsphere and control group. Moreover, when the processing time reaches 36 h, COD degradation of SA/PVA/ZnO microsphere is obviously higher than other groups (SA/PVA/ZnO:SA/ZnO:control vs 18.535 : 15.446: 10.812). Similar results were obtained from 30% concentration slaughter wastewater. Moreover, protein degradation assay was detected, and there are no significant difference (SA/PVA/ZnO:SA/ZnO:control vs 35.4 : 34.4: 36.0). The design of this strategy could greatly enhance the degradation efficiency, inhibit the growth of other bacteria and no effect on the activity of protease in slaughter wastewater. These findings suggested that the nano-ZnO hydrogel immobilization Bacillus velezensis system wastewater treatment is a valuable alternative method for the remediation of pollutants from slaughter wastewater with a novel and eco-friendly with low-cost investment as an advantage.


Asunto(s)
Óxido de Zinc , Bacillus , Humanos , Microesferas , Alcohol Polivinílico , Aguas Residuales
15.
J Environ Manage ; 303: 114162, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34861504

RESUMEN

The aim of this work was to assess the nitrogen removal from slaughterhouse wastewater in an anaerobic-anoxic-aerobic combined reactor, evaluating the integrated effect of recirculation rate and hydraulic retention time. The recirculation of the liquid phase from the aerobic zone to the anoxic zone was applied to promote the denitrification through the use of endogenous electron donors. Three recirculation rates (R: 0.5, 1 and 2) and three hydraulic retention times (14, 11 and 8 h) were applied. The operation of the reactor was divided into 3 steps (I, II, and III) according to the factors evaluated (recirculation rate and HRT), to achieve operational conditions that would allow satisfactory performance in the different compartments of the reactor. During the experiment the reactor was fed with average total nitrogen (TN) and chemical oxygen demand (COD) of 65 mg L-1 and 580 mg L-1, respectively. The denitrification efficiency (theoretical) and kinetics parameters for COD decay were calculated. The highest performance was verified in the Step III (R = 2) and HRT of 11 h with NH4+ and TN removals of 84% and 65%, respectively. The TN removal efficiency (65%) was considered satisfactory, since the theoretical denitrification efficiency expected for this condition (R = 2) is 67%, without addition of an external carbon source. The lowest nitrification efficiency values were obtained in HRT of 8 h in the Step I and II (R = 0.5 and 1, respectively), indicating that the nitrification time (3 h - aerobic phase) may be the limiting factor in this HRT. The COD removal efficiency was high in all assays (>95%). The values of the kinetic degradation constants of organic matter were close for all recirculation rates, and the highest values were recorded for the HRT of 8 h and R = 1 and R = 2 (-0.48 and -0.43, respectively).


Asunto(s)
Nitrógeno , Aguas Residuales , Mataderos , Anaerobiosis , Animales , Reactores Biológicos , Desnitrificación , Aves de Corral , Eliminación de Residuos Líquidos
16.
Eng. sanit. ambient ; 26(4): 721-730, ago. 2021. tab, graf
Artículo en Portugués | LILACS-Express | LILACS | ID: biblio-1339846

RESUMEN

RESUMO Os wetlands construídos (WC) são uma ecotecnologia aplicável para o tratamento descentralizado de esgotos notadamente em pequenas comunidades, em razão de sua simplicidade operacional. Existem vários arranjos e combinações de WC possíveis, destacando-se o arranjo tanque séptico (TS), seguido da modalidade de WC de escoamento vertical (WCV) com recirculação do efluente do WCV de volta para o TS, como proposta para possibilitar a remoção de nitrogênio presente no esgoto afluente. Entretanto, no Brasil, essa configuração e suas implicações operacionais e de desempenho são pouco exploradas. Diante disso, o objetivo deste trabalho foi avaliar o desempenho de um sistema de TS seguido de um WCV com recirculação no tratamento descentralizado de esgoto doméstico. O sistema empregado no tratamento de esgoto de um equivalente populacional de dez habitantes é composto de um TS (4,7 m3 de volume útil), seguido de um WCV (24,5 m2 de área superficial) preenchido com brita e plantado com Canna spp. O monitoramento, que compreendeu um período de nove meses, teve início após um ano e cinco meses de operação do sistema. Utilizando taxa de 50% de recirculação, taxa de aplicação hidráulica no WCV de 85 mm d-1 e carga de 47 g DQO m-2.d-1, foram obtidas boas eficiências para remoção conjunta de demanda química de oxigênio — DQO (80%), sólidos em suspensão totais — SST (85%) e nitrogênio total —NT (42%), mesmo com elevadas cargas orgânicas. Além das boas eficiências apresentadas, o sistema demonstrou ser robusto e de operação simples e representa uma alternativa tecnológica com potencial para o tratamento descentralizado de esgotos de empreendimentos habitacionais.


ABSTRACT Constructed wetland (CW) is an applicable eco-technology for decentralized wastewater treatment, notably in small communities, due to its operational simplicity. CW has several possible arrangements and combinations, among which the septic tank (ST) stands out, followed by the vertical flow constructed wetland (VFCW), with treated effluent recirculation back to the ST to enable nitrogen removal. However, in Brazil, this configuration and its operational and performance implications are little explored. Therefore, this study aimed to evaluate the performance of an ST system, followed by a VFCW with recirculation in the decentralized treatment of domestic wastewater. The wastewater treatment system for 10 inhabitants consists of an ST (4.7 m3 of useful volume), followed by a VFCW (24.5 m2 of surface area) planted with Canna spp. The monitoring, which covered a period of nine months, started after one year and five months of system operation. Using a 50% recirculation rate, VFCW hydraulic loading rate of 85 mm d-1, and organic load of 47 g COD m-2 d-1, good efficiencies were obtained for the joint removal of chemical oxygen demand — COD (80%), total suspended solids — TSS (85%), and total nitrogen — TN (42%), even with high organic loads. In addition to the good efficiencies presented, the system proved to be robust and easy to operate, representing a technological alternative with potential for the decentralized wastewater treatment of housing developments.

17.
J Hazard Mater ; 418: 126298, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34119980

RESUMEN

This work investigated the removal efficiency of disinfection by-product (DBP) precursors by different drinking water treatment processes and evaluated the feasibility of using fluorescence components removal as an indicator. A four-component (including tryptophan-like, protein-bound, tyrosine-like, and humic-like components) parallel factor analysis model was developed basing on 288 fluorescence excitation-emission matrices. Among all treatment processes, coagulation-sedimentation process showed the best performance, with mean removal ratios of 30% in total fluorescence intensity and 31% in total formation potential (FP) of DBPs, respectively. It preferentially removed humic-like component C4 (43%). Advanced treatment processes were less effective in comparison. Ozone and biological activated carbon (BAC) combined process reduced 20% of total fluorescence intensity, while ultrafiltration process reduced < 3%. Ozonation and BAC filtration preferentially removed free amino acids (i.e., C1 and C3) and protein-bound (i.e., C2) components, with mean removal ratios of 12% and 17%, respectively. Significant correlations (p < 0.01, double-tailed) were observed between four fluorescence components removal and FPs reduction of three trihalomethanes, dichloroacetonitrile (DCAN), and 1,1-dichloropropanone (1,1-DCP). Specifically, the correlation coefficients for three trihalomethanes and 1,1-DCP followed the order of C4 > C1 > C2 > C3, while the order for DCAN was C2 > C4 > C1 > C3.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Agua Potable/análisis , Análisis Factorial , Contaminantes Químicos del Agua/análisis
18.
Sci Total Environ ; 783: 147065, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34088143

RESUMEN

Many methods have been used to isolate and identify microplastics from biological matrices. In biological samples, Nile Red can stain undigested residues, such as fats, soaps, and gels formed during organic matter removal, hindering the identification of fluorescent microplastics (≥2 µm). Thus, adjustments on sample preparation (e.g., fat removal) are required for the accurate identification of Nile Red stained microplastics. Multiples tests allowed to identify that digestion with 10% KOH at 60 °C for 24 h, followed by treatments with boiling water, acetone, and staining, produced good results in fourteen biological samples, including vertebrates and invertebrates. Digestion efficiencies were 94-100%, except for feces, which were 87%. Recovery rates of spiked microplastics were 97-100%, and few effects were observed in the infrared spectra and carbonyl index of seven polymers, with only the occasional yellowing suggesting surface changes. Filtration rates were improved by reducing the amount of sample. Small fluorescent microplastics could be identified in all samples under the microscope. Overall, the proposed method was efficient in removing natural organic matter from biological samples for Nile Red staining, requiring minimal sample handling, improving sample throughput, and allowing quantification of fluorescent microplastics in biological samples.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Oxazinas , Plásticos , Contaminantes Químicos del Agua/análisis
19.
Environ Sci Pollut Res Int ; 28(26): 34473-34488, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33651288

RESUMEN

The contamination of water with organic compounds has become an increasing concern in today's world. The cost-effective and sustainable treatment of industrial wastewaters is a major challenge. Advanced treatment techniques such as electrocoagulation-electroflotation offer economic and reliable solutions for the treatment of industrial wastewater. In this study, the electrocoagulation-electroflotation method was investigated for the simultaneous removal of chemical oxygen demand, total phosphorus, total Kjeldahl nitrogen, and color via response surface methodology. Factors such as electrode combination (Fe and Al), current density (10-20 mA/cm2), pH (3.0-9.0), and electrode distance (1-3 cm) were investigated in the treatment of wastewater to obtain maximum treatment efficiency. It was determined that chemical oxygen demand, total Kjeldahl nitrogen, total phosphorus, and color removal reached up to 94.0%, 77.5%, 97.0%, and 99.0%, respectively. Treatment costs were found as $0.71 with the Al-Fe electrode combination.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Mataderos , Análisis de la Demanda Biológica de Oxígeno , Electrocoagulación , Electrodos , Concentración de Iones de Hidrógeno , Residuos Industriales/análisis , Eliminación de Residuos Líquidos , Aguas Residuales/análisis
20.
Water Environ Res ; 93(3): 409-420, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32777158

RESUMEN

In this study, removal of organic matter and nitrogen from a cattle slaughterhouse wastewater was investigated in a two-stage anoxic-aerobic biological system, followed by UV-C disinfection. Ecotoxicity of the raw, biotreated, and disinfected wastewater against the microalgae Scenedesmus sp. was evaluated in short-term tests, while the potential of the microalgae as a nutrient removal step was addressed in long-term experiments. Throughout 5 operational phases, the biological system was subjected to gradual reduction of the hydraulic retention time (8-1.5 day), increasing the organic (0.21-1.11 kgCOD·m-3 ·day-1 ) and nitrogen (0.05-0.28 kgN·m-3 · day-1 ) loading rates. COD and total ammoniacal nitrogen (TAN) removal ranged within 83%-97% and 83%-99%, respectively. While providing alkalinity source, effluent TAN concentrations were below 5 mg·L-1 . Nitrate was the main nitrification product, while nitrite levels remained low (<1 mgN·L-1 ). Upon supplementation of external COD as ethanol, total nitrogen removal reached up to 90% at the highest load (0.28 kgN·m-3 ·day-1 ). After UV-C treatment, 3-log reduction of total coliforms was attained. The 96-hr ecotoxicity tests showed that all non-diluted samples tested (raw, biologically treated and UV-C irradiated wastewater) were toxic to microalgae. Nevertheless, these organisms were able to acclimate and grow under the imposed conditions, allowing to achieve nitrogen and phosphorous removal up to 99.1% and 43.0%, respectively. PRACTITIONER POINTS: The treatment of a slaughterhouse wastewater in an anoxic-aerobic biological system followed by a UV-C disinfection step was assessed. The pre-denitrification system showed efficient simultaneous removal of organic matter and nitrogen from the wastewater under increasing applied loads. UV-C disinfection worked effectively in reducing coliforms from the biotreated effluent, boosting the performance of microalgae on nutrients removal. Despite the toxicity to microalgae, they were capable to acclimate to the aqueous matrices tested, reducing efficiently the nutrients content. The combined stages of treatment presented great capacity for depleting up to 97% COD, 99% nitrogen, and 43% phosphorous.


Asunto(s)
Microalgas , Aguas Residuales , Mataderos , Animales , Biodegradación Ambiental , Reactores Biológicos , Bovinos , Desnitrificación , Desinfección , Nitrógeno , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA