Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(11): e2318760121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442150

RESUMEN

The animal foregut is the first tissue to encounter ingested food, bacteria, and viruses. We characterized the adult Drosophila foregut using transcriptomics to better understand how it triages consumed items for digestion or immune response and manages resources. Cell types were assigned and validated using GFP-tagged and Gal4 reporter lines. Foregut-associated neuroendocrine cells play a major integrative role by coordinating gut activity with nutrition, the microbiome, and circadian cycles; some express clock genes. Multiple epithelial cell types comprise the proventriculus, the central foregut organ that secretes the peritrophic matrix (PM) lining the gut. Analyzing cell types synthesizing individual PM layers revealed abundant mucin production close to enterocytes, similar to the mammalian intestinal mucosa. The esophagus and salivary gland express secreted proteins likely to line the esophageal surface, some of which may generate a foregut commensal niche housing specific gut microbiome species. Overall, our results imply that the foregut coordinates dietary sensing, hormonal regulation, and immunity in a manner that has been conserved during animal evolution.


Asunto(s)
Líquidos Corporales , Drosophila , Animales , Células Epiteliales , Recuento de Células , Estado Nutricional , Mamíferos
2.
Sci Total Environ ; 898: 165538, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37454833

RESUMEN

Exploring the adaptation strategies of plants under stressful environments from an ecological stoichiometry perspective is a critical but underexplored research topic, and multi-organ collaborative research for multi-species can provide a comprehensive understanding. In this study, helophytes were selected as the subjects, and water depth and water N-enrichment were set as the stressors. A simulation experiment including three water depths (drought stress, control and flooding stress) and four water N-enrichment levels (control, low, medium and high N-enrichment stresses) for six helophyte species was carried out. Overall, C concentrations in all plant organs remained stable under water (drought-flooding stress) and N-enrichment stress. N concentrations increased under both flooding and drought stresses, while P concentrations and the N:P ratio showed an increase and decrease under only flooding stress, respectively. N concentration and N:P ratio increased with water N-enrichment level. The interaction only promoted the accumulation of N concentrations in aboveground organs. Especially, several species also changed organ C concentrations to adapt to water stress and adjusted root N concentrations for the combined stresses of flooding or drought and high N. Leaf and stem were strongly synergistic in N element, and leaf and root were mainly synergistic in P element. Water N-enrichment determined organ element concentrations more than water depth, and species identity dictated organ C:N:P ratios. Our results reveal that the allocation and synergy of nutrients among organs are important adaptive strategies for plants in stressful environments. Meanwhile, increasing water N-enrichment can be an unignored stressor, and species identity should be paid attention as a countermeasure.


Asunto(s)
Nitrógeno , Plantas , Humanos , Sequías , Inundaciones , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA