Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39303712

RESUMEN

The brainstem is a hub for sensorimotor integration, which mediates crucial innate behaviors. This brain region is characterized by a rich population of GABAergic inhibitory neurons, required for the proper expression of these innate behaviors. However, what roles these inhibitory neurons play in innate behaviors and how they function are still not fully understood. Here, we show that inhibitory neurons in the nucleus of the optic tract and dorsal-terminal nuclei (NOT-DTN) of the mouse can modulate the innate eye movement optokinetic reflex (OKR) by shaping the tuning properties of excitatory NOT-DTN neurons. Specifically, we demonstrate that although these inhibitory neurons do not directly induce OKR, they enhance the visual feature selectivity of OKR behavior, which is mediated by the activity of excitatory NOT-DTN neurons. Moreover, consistent with the sharpening role of inhibitory neurons in OKR behavior, they have broader tuning relative to excitatory neurons. Last, we demonstrate that inhibitory NOT-DTN neurons directly provide synaptic inhibition to nearby excitatory neurons and sharpen their tuning in a sustained manner, accounting for the enhanced feature selectivity of OKR behavior. In summary, our findings uncover a fundamental principle underlying the computational role of inhibitory neurons in brainstem sensorimotor circuits.

2.
J Clin Med ; 13(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38792284

RESUMEN

Background: The aim of the study was to demonstrate the influence of virtual reality (VR) exposure on postural stability and determine the mechanism of this influence. Methods: Twenty-six male participants aged 21-23 years were included, who underwent postural stability assessment twice before and after a few minute of single VR exposure. The VR projection was a computer-generated simulation of the surrounding scenery. Postural stability was assessed using the Sensory Organization Test (SOT), using Computerized Dynamic Posturography (CDP). Results: The findings indicated that VR exposure affects the visual and vestibular systems. Significant differences (p < 0.05) in results before and after VR exposure were observed in tests on an unstable surface. It was confirmed that VR exposure has a positive influence on postural stability, attributed to an increase in the sensory weight of the vestibular system. Partial evidence suggested that the reduction in vestibulo-ocular reflex (VOR) reinforcement may result in an adaptive shift to the optokinetic reflex (OKR). Conclusions: By modifying the process of environmental perception through artificial sensory simulation, the influence of VR on postural stability has been demonstrated. The validity of this type of research is determined by the effectiveness of VR techniques in the field of vestibular rehabilitation.

3.
J Assoc Res Otolaryngol ; 25(2): 167-177, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38361011

RESUMEN

One-sided vestibular disorders are common in clinical practice; however, their models have not been fully established. We investigated the effect of unilateral or bilateral deficits in the vestibular organs on the vestibulo-ocular reflex (VOR) and optokinetic reflex (OKR) of zebrafish using in-house equipment. For physical dislodgement of the otoliths in the utricles of zebrafish larvae, one or both utricles were separated from the surrounding tissue using glass capillaries. The video data from VOR and OKR tests with the larvae was collected and processed using digital signal processing techniques such as fast Fourier transform and low-pass filters. The results showed that unilateral and bilateral damage to the vestibular system significantly reduced VOR and OKR. In contrast, no significant difference was observed between unilateral and bilateral damage. This study confirmed that VOR and OKR were significantly reduced in zebrafish with unilateral and bilateral vestibular damage. Follow-up studies on unilateral vestibular disorders can be conducted using this tool.


Asunto(s)
Enfermedades Vestibulares , Vestíbulo del Laberinto , Animales , Reflejo Vestibuloocular , Pez Cebra
4.
eNeuro ; 11(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38164595

RESUMEN

To generate a coherent visual percept, information from both eyes must be appropriately transmitted into the brain, where binocular integration forms the substrate for visuomotor behaviors. To establish the anatomical substrate for binocular integration, the presence of bilateral eyes and interaction of both optic nerves during retinotectal development play a key role. However, the extent to which embryonic monocularly derived visual circuits can convey visuomotor behaviors is unknown. In this study, we assessed the retinotectal anatomy and visuomotor performance of embryonically generated one-eyed tadpoles. In one-eyed animals, the axons of retinal ganglion cells from the singular remaining eye exhibited striking irregularities in their central projections in the brain, generating a noncanonical ipsilateral retinotectal projection. This data is indicative of impaired pathfinding abilities. We further show that these novel projections are correlated with an impairment of behavioral compensation for the loss of one eye.


Asunto(s)
Retina , Colículos Superiores , Animales , Retina/fisiología , Xenopus laevis , Colículos Superiores/anatomía & histología , Vías Visuales/fisiología , Nervio Óptico
5.
Front Cell Dev Biol ; 11: 1298486, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965576

RESUMEN

Animals constantly redirect their gaze away or towards relevant targets and, besides these goal-oriented responses, stabilizing movements clamp the visual scene avoiding image blurring. The vestibulo-ocular (VOR) and the optokinetic reflexes are the main contributors to gaze stabilization, whereas the optic tectum integrates multisensory information and generates orienting/evasive gaze movements in all vertebrates. Lampreys show a unique stepwise development of the visual system whose understanding provides important insights into the evolution and development of vertebrate vision. Although the developmental emergence of the visual components, and the retinofugal pathways have been described, the functional development of the visual system and the development of the downstream pathways controlling gaze are still unknown. Here, we show that VOR followed by light-evoked eye movements are the first to appear already in larvae, despite their burrowed lifestyle. However, the circuits controlling goal-oriented responses emerge later, in larvae in non-parasitic lampreys but during late metamorphosis in parasitic lampreys. The appearance of stabilizing responses earlier than goal-oriented in the lamprey development shows a stepwise transition from simpler to more complex visual systems, offering a unique opportunity to isolate the functioning of their underlying circuits.

6.
J Neurol ; 270(1): 57-70, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35947153

RESUMEN

Visual image motion-driven ocular motor behaviors such as the optokinetic reflex (OKR) provide sensory feedback for optimizing gaze stability during head/body motion. The performance of this visuo-motor reflex is subject to plastic alterations depending on requirements imposed by specific eco-physiological or developmental circumstances. While visuo-motor plasticity can be experimentally induced by various combinations of motion-related stimuli, the extent to which such evoked behavioral alterations contribute to the behavioral demands of an environment remains often obscure. Here, we used isolated preparations of Xenopus laevis tadpoles to assess the extent and ontogenetic dependency of visuo-motor plasticity during prolonged visual image motion. While a reliable attenuation of large OKR amplitudes can be induced already in young larvae, a robust response magnitude-dependent bidirectional plasticity is present only at older developmental stages. The possibility of older larvae to faithfully enhance small OKR amplitudes coincides with the developmental maturation of inferior olivary-Purkinje cell signal integration. This conclusion was supported by the loss of behavioral plasticity following transection of the climbing fiber pathway and by the immunohistochemical demonstration of a considerable volumetric extension of the Purkinje cell dendritic area between the two tested stages. The bidirectional behavioral alterations with different developmental onsets might functionally serve to standardize the motor output, comparable to the known differential adaptability of vestibulo-ocular reflexes in these animals. This homeostatic plasticity potentially equilibrates the working range of ocular motor behaviors during altered visuo-vestibular conditions or prolonged head/body motion to fine-tune resultant eye movements.


Asunto(s)
Movimientos Oculares , Reflejo Vestibuloocular , Animales , Xenopus laevis/fisiología , Larva , Reflejo Vestibuloocular/fisiología , Visión Ocular , Estimulación Luminosa
7.
Dokl Biol Sci ; 506(1): 132-136, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36301419

RESUMEN

The restructuring of the gaze stabilization system in Pelobates fuscus was investigated by quantitative analysis of the optomotor response using video imaging. Gaze stabilization is an important component in the system of neural mechanisms of visual depth perception. It was shown that the optomotor response in aquatic tadpoles of P. fuscus is similar to that of fish (movement of the animal in the direction of the visual background movement and eye nystagmus consisting of a fast and a slow phase). During metamorphosis (transition from the aquatic to the terrestrial lifestyle), froglets of P. fuscus responded to the movement of the visual background by eyes and head movements. One year after metamorphosis, P. fuscus responded to movement of the visual background as adult Anura: only by head movements (a slow and a fast phase), while eye movements were absent. Possible causes of the loss of active eye movements by Anura amphibians in the process of evolution are discussed.


Asunto(s)
Movimientos Oculares , Reflejo , Animales , Reflejo/fisiología , Anuros , Metamorfosis Biológica , Movimiento
8.
Cells ; 11(17)2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36078147

RESUMEN

Spinocerebellar Ataxia Type 6 (SCA6) is a mid-life onset neurodegenerative disease characterized by progressive ataxia, dysarthria, and eye movement impairment. This autosomal dominant disease is caused by the expansion of a CAG repeat tract in the CACNA1A gene that encodes the α1A subunit of the P/Q type voltage-gated Ca2+ channel. Mouse models of SCA6 demonstrate impaired locomotive function and reduced firing precision of cerebellar Purkinje in the anterior vermis. Here, to further assess deficits in other cerebellar-dependent behaviors, we characterized the oculomotor phenotype of a knock-in mouse model with hyper-expanded polyQ repeats (SCA684Q). We found a reduction in the efficacy of the vestibulo-ocular reflex (VOR) and optokinetic reflex (OKR) in SCA6 mutant mice, without a change in phase, compared to their litter-matched controls. Additionally, VOR motor learning was significantly impaired in SCA684Q mice. Given that the floccular lobe of the cerebellum plays a vital role in the generation of OKR and VOR calibration and motor learning, we investigated the firing behavior and morphology of floccular cerebellar Purkinje cells. Overall, we found a reduction in the firing precision of floccular lobe Purkinje cells but no morphological difference between SCA684Q and wild-type mice. Taken together, our findings establish that gaze stabilization and motor learning are impaired in SCA684Q mice and suggest that altered cerebellar output contributes to these deficits.


Asunto(s)
Ataxias Espinocerebelosas , Degeneraciones Espinocerebelosas , Animales , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Ratones , Células de Purkinje , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Degeneraciones Espinocerebelosas/genética
9.
J Integr Neurosci ; 21(5): 131, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-36137951

RESUMEN

BACKGROUND: Although the occurrence of optokinetic reflex (OKR) adaptation after OKR training is well established, the dynamic properties of OKR adaptation has not been fully studied. This study aimed to examine the difference in the amount of OKR adaptation according to OKR training protocols which have different frequency or amplitude of drum oscillation. METHODS: Using C57BL/6N male mice, we induced OKR adaptation by 3 different categories of learning paradigm as follows: (1) Optokinetic drum oscillation for 60 min with same amplitude and different frequency. (2) Optokinetic drum oscillation for 60 min with same frequency and different amplitude. (3) Training with serial combination of different frequency or amplitude. RESULTS: The results show that the amount of OKR adaptation was greater after OKR training with lower frequency or amplitude than that with higher frequency or amplitude. CONCLUSIONS: This finding may suggest that the retinal slip signal with lower-velocity OKR stimulation serves as more precise instructive signal for learning, leading to induction of more efficient training effect. Another interesting finding was that the OKR gain increase tended to be greater after training composed of sequential combination of decreasing frequency or amplitude than that composed of sequential combination of increasing frequency or amplitude. Furthermore, the OKR training with high frequency or amplitude eliminated a part of learning effects which have already formed by previous training. We postulate that the stimulation during training with high frequency or amplitude may implement a disturbing instruction for OKR learning when it is conducted in mice with increased OKR gain after previous OKR training.


Asunto(s)
Movimientos Oculares , Reflejo , Adaptación Fisiológica/fisiología , Animales , Aprendizaje , Masculino , Ratones , Ratones Endogámicos C57BL
10.
Front Neurol ; 13: 897293, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903124

RESUMEN

The angular vestibulo-ocular reflex (aVOR) stabilizes retinal images by counter-rotating the eyes during head rotations. Perfect compensatory movements would thus rotate the eyes exactly opposite to the head, that is, eyes vs. head would exhibit a unity gain. However, in many species, but also in elderly humans or patients with a history of vestibular damage, the aVOR is far from compensatory with gains that are in part considerably lower than unity. The reason for this apparent suboptimality is unknown. Here, we propose that low VOR gain values reflect an optimal adaptation to sensory and motor signal variability. According to this hypothesis, gaze stabilization mechanisms that aim at minimizing the overall retinal image slip must consider the effects of (1) sensory and motor noise and (2) dynamic constraints of peripheral and central nervous processing. We demonstrate that a computational model for optimizing retinal image slip in the presence of such constraints of signal processing in fact predicts gain values smaller than unity. We further show specifically for tadpoles of the clawed toad, Xenopus laevis with particularly low gain values that previously reported VOR gains quantitatively correspond to the observed variability of eye movements and thus constitute an optimal adaptation mechanism. We thus hypothesize that lower VOR gain values in elderly human subjects or recovered patients with a history of vestibular damage may be the sign of an optimization given higher noise levels rather than a direct consequence of the damage, such as an inability of executing fast compensatory eye movements.

11.
J Neural Eng ; 19(3)2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35675762

RESUMEN

Objective.Functional maps of the central nervous system attribute the coordination and control of many body movements directly or indirectly to the cerebellum. Despite this general picture, there is little information on the function of cerebellar neural components at the circuit level. The presence of multiple synaptic junctions and the synergistic action of different types of plasticity make it virtually difficult to determine the distinct contribution of cerebellar neural processes to behavioral manifestations. In this study, investigating the effect of long-term synaptic changes on cerebellar motor learning, we intend to provide quantitative criteria for localizing defects in the major forms of synaptic plasticity in the cerebellum.Approach.To this end, we develop a firing rate model of the cerebellar circuits to simulate learning of optokinetic reflex (OKR), one of the most well-known cerebellar-dependent motor tasks. In the following, by comparing the simulated OKR learning profile for normal and pathosynaptic conditions, we extract the learning features affected by long-term plasticity disorders. Next, conducting simulation with different massed (continuous with no rest) and spaced (interleaved with rest periods) learning paradigms, we estimate the detrimental impact of plasticity defects at corticonuclear synapses on short- and long-term motor memory.Main results.Our computational approach predicts a correlation between location and grade of the defect with some learning factors such as the rate of formation and retention of motor memory, baseline performance, and even cerebellar motor reserve capacity. Further, spacing analysis reveal the dependence of learning paradigm efficiency on the spatiotemporal characteristic of defect in the network. Indeed, defects in cortical memory formation and nuclear memory consolidation mainly harm massed and spaced learning, respectively. This result is used to design a differential assay for identifying the faulty phases of cerebellar learning.Significance.The proposed computational framework can help develop neural-screening systems and prepare meso-scale functional maps of the cerebellar circuits.


Asunto(s)
Cerebelo , Plasticidad Neuronal , Cerebelo/fisiología , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Reflejo , Sinapsis/fisiología
12.
Behav Brain Res ; 426: 113837, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35288176

RESUMEN

Although the superiority of spaced training over massed training has been established in many forms of learning, the learning efficacy between the two with respect to time efficiency may not be simply compared because a longer total duration of learning is required in spaced training than massed training due to spacing intervals intervening between training sessions in the former. The purpose of the present study was to evaluate the differences in the adaptation of the vestibulo-ocular reflex (VOR) and optokinetic reflex (OKR) after visuo-vestibular training, and to investigate the efficacy of spaced and massed training in mice. Associative visuo-vestibular stimulation was applied to induce VOR and OKR motor learning. Training paradigms were categorized into five groups according to the duration of the spacing interval, keeping the total training time including spacing equal in all training paradigms. Both gain-up VOR training, which increased VOR gain and gain-down VOR training, which decreased VOR gain, increased OKR gain in the massed and spaced learning paradigms. While the increment in OKR gain after gain-up and gain-down training was maintained at 48 h after the end of the last training session, the change in VOR gain by gain-up or gain-down training recovered gradually after training. The OKR adaptation was still in progress during the spacing interval, and the amount of gain increase was greater with longer spacing interval. On the other hand, the VOR gain change after gain-up and gain-down training substantially recovered during the spacing interval. In conclusion, the present study, using learning paradigms with same total duration of training, demonstrated that the spacing effect was more robust in the adaptation of OKR than that of VOR, and the learning effect was maintained longer in OKR than in VOR. These differences in the adaptation of VOR and OKR following identical training conditions suggest that multiple plasticity mechanisms may be differentially involved in the gaze stabilization circuitry.


Asunto(s)
Reflejo Vestibuloocular , Vestíbulo del Laberinto , Adaptación Fisiológica/fisiología , Animales , Movimientos Oculares , Aprendizaje , Ratones , Reflejo Vestibuloocular/fisiología , Vestíbulo del Laberinto/fisiología
13.
Brain Behav ; 11(1): e01944, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33185985

RESUMEN

INTRODUCTION: The superiority of spaced training, in which repeated training sessions are given with resting intervals, over massed training in learning efficacy has been well established. However, longer duration of total training time has been required for spaced training than massed training because spacing intervals intervene between training sessions in spaced training. Thus, the learning efficacy may not be simply compared between spaced and massed training in terms of "time efficiency." The aim of the present study was to investigate the efficacy of spaced and massed training using adaptation of horizontal optokinetic reflex (hOKR) in mice. METHODS: Training paradigms were categorized into seven groups according to the duration of spacing interval, keeping total duration of hOKR training including spacing almost equal in all training paradigms. RESULTS: The amount of short-term hOKR gain increase immediately after the 60 min hOKR training was not significantly different among seven training paradigms. The hOKR adaptation was still in progress during a spacing interval, and the increment in hOKR gain tended to be greater with the longer spacing interval. The increase in hOKR gain was maintained until 48 hr after the end of training in both massed and spaced training. CONCLUSION: The short-term learning effect was not significantly different among training paradigms regardless of spacing interval in hOKR adaptation, which suggests that the spacing effect is robust enough to overcome the shortage of optokinetic training cycles in hOKR adaptation.


Asunto(s)
Adaptación Fisiológica , Aprendizaje , Animales , Ratones , Descanso , Factores de Tiempo
14.
J Neurol ; 267(Suppl 1): 62-75, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32915311

RESUMEN

Loss of peripheral vestibular function provokes severe impairments of gaze and posture stabilization in humans and animals. However, relatively little is known about the extent of the instantaneous deficits. This is mostly due to the fact that in humans a spontaneous loss often goes unnoticed initially and targeted lesions in animals are performed under deep anesthesia, which prevents immediate evaluation of behavioral deficits. Here, we use isolated preparations of Xenopus laevis tadpoles with functionally intact vestibulo-ocular (VOR) and optokinetic reflexes (OKR) to evaluate the acute consequences of unilateral VIIIth nerve sections. Such in vitro preparations allow lesions to be performed in the absence of anesthetics with the advantage to instantly evaluate behavioral deficits. Eye movements, evoked by horizontal sinusoidal head/table rotation in darkness and in light, became reduced by 30% immediately after the lesion and were diminished by 50% at 1.5 h postlesion. In contrast, the sinusoidal horizontal OKR, evoked by large-field visual scene motion, remained unaltered instantaneously but was reduced by more than 50% from 1.5 h postlesion onwards. The further impairment of the VOR beyond the instantaneous effect, along with the delayed decrease of OKR performance, suggests that the immediate impact of the sensory loss is superseded by secondary consequences. These potentially involve homeostatic neuronal plasticity among shared VOR-OKR neuronal elements that are triggered by the ongoing asymmetric activity. Provided that this assumption is correct, a rehabilitative reduction of the vestibular asymmetry might restrict the extent of the secondary detrimental effect evoked by the principal peripheral impairment.


Asunto(s)
Reflejo Vestibuloocular , Vestíbulo del Laberinto , Animales , Movimientos Oculares , Humanos , Larva , Xenopus laevis
15.
Neurobiol Aging ; 95: 214-224, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32858248

RESUMEN

Tau is a microtubule-associated protein involved in Alzheimer's disease. However, little is known on its physiological function in the healthy central nervous system. Here, we observed that the expression of Tau isoforms was modulated by neuronal maturation and visual experience in the mouse retina and in the visual cortex. The visual function of wild-type (WT) and Tau knockout (KO) mice was evaluated using the optokinetic reflex (OKR), an innate visuomotor behavior, and by electroretinography. Visual tests did not reveal functional impairments in young adult and old Tau KO animals. Moreover, monocular deprivation (MD) was used to increase OKR sensitivity, a plasticity phenomenon depending on the visual cortex. MD-induced OKR sensitivity enhancement was significantly stronger in Tau KO than in WT mice suggesting that Tau restricts visual plasticity. In addition, human Tau expression did not affect visual function and plasticity in a mouse tauopathy model, relative to WT controls. Our results unveil a novel function for Tau in the adaptive mechanisms of plasticity operating in the adult brain subjected to sensory experience changes.


Asunto(s)
Envejecimiento/metabolismo , Envejecimiento/fisiología , Plasticidad Neuronal/genética , Corteza Visual/fisiología , Proteínas tau/metabolismo , Proteínas tau/fisiología , Adaptación Fisiológica/genética , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Noqueados , Retina/metabolismo , Tauopatías/fisiopatología , Corteza Visual/metabolismo
16.
Front Neural Circuits ; 13: 54, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31507382

RESUMEN

High-fidelity regulation of information transmission among cerebellar layers is mainly provided by synaptic plasticity. Therefore, determining the regulatory foundations of synaptic plasticity in the cerebellum and translating them to behavioral output are of great importance. To date, many experimental studies have been carried out in order to clarify the effect of synaptic defects, while targeting a specific signaling pathway in the cerebellar function. However, the contradictory results of these studies at the behavioral level further add to the ambiguity of the problem. Information transmission through firing rate changes in populations of interconnected neurons is one of the most widely accepted principles of neural coding. In this study, while considering the efficacy of synaptic interactions among the cerebellar layers, we propose a firing rate model to realize the concept of transmission coefficient. Thereafter, using a computational approach, we test the effect of different values of transmission coefficient on the gain adaptation of a cerebellar-dependent motor learning task. In conformity with the behavioral data, the proposed model can accurately predict that disruption in different forms of synaptic plasticity does not have the same effect on motor learning. Specifically, impairment in training mechanisms, like in the train-induced LTD in parallel fiber-Purkinje cell synapses, has a significant negative impact on all aspects of learning, including memory formation, transfer, and consolidation, although it does not disrupt basic motor performance. In this regard, the overinduction of parallel fiber-molecular layer interneuron LTP could not prevent motor learning impairment, despite its vital role in preserving the robustness of basic motor performance. In contrast, impairment in plasticity induced by interneurons and background activity of climbing fibers is partly compensable through overinduction of train-induced parallel fiber-Purkinje cell LTD. Additionally, blockade of climbing fiber signaling to the cerebellar cortex, referred to as olivary system lesion, shows the most destructive effect on both motor learning and basic motor performance. Overall, the obtained results from the proposed computational framework are used to provide a map from procedural motor memory formation in the cerebellum. Certainly, the generalization of this concept to other multi-layered networks of the brain requires more physiological and computational researches.


Asunto(s)
Corteza Cerebelosa/fisiología , Hipocampo/fisiología , Modelos Neurológicos , Actividad Motora/fisiología , Neocórtex/fisiología , Transmisión Sináptica/fisiología , Animales , Corteza Cerebelosa/citología , Cerebelo/citología , Cerebelo/fisiología , Hipocampo/citología , Ratones , Neocórtex/citología , Células de Purkinje/fisiología
17.
J Neurophysiol ; 121(5): 1865-1878, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30892975

RESUMEN

Computational capability and connectivity are key elements for understanding how central vestibular neurons contribute to gaze-stabilizing eye movements during self-motion. In the well-characterized and segmentally distributed hindbrain oculomotor network of goldfish, we determined afferent and efferent connections along with discharge patterns of descending octaval nucleus (DO) neurons during different eye motions. Based on activity correlated with horizontal eye and head movements, DO neurons were categorized into two complementary groups that either increased discharge during both contraversive (type II) eye (e) and ipsiversive (type I) head (h) movements (eIIhI) or vice versa (eIhII). Matching time courses of slow-phase eye velocity and corresponding firing rates during prolonged visual and head rotation suggested direct causality in generating extraocular motor commands. The axons of the dominant eIIhI subgroup projected either ipsi- or contralaterally and terminated in the abducens nucleus, Area II, and Area I with additional recurrent collaterals of ipsilaterally projecting neurons within the parent nucleus. Distinct feedforward commissural pathways between bilateral DO neurons likely contribute to the generation of eye velocity signals in eIhII cells. The shared contribution of DO and Area II neurons to eye velocity storage likely represents an ancestral condition in goldfish that is clearly at variance with the task separation between mammalian medial vestibular and prepositus hypoglossi neurons. This difference in signal processing between fish and mammals might correlate with a larger repertoire of visuo-vestibular-driven eye movements in the latter species that potentially required a shift in sensitivity and connectivity within the hindbrain-cerebello-oculomotor network. NEW & NOTEWORTHY We describe the structure and function of neurons within the goldfish descending octaval nucleus. Our findings indicate that eye and head velocity signals are processed by vestibular and Area II velocity storage integrator circuitries whereas the velocity-to-position Area I neural integrator generates eye position solely. This ancestral condition differs from that of mammals, in which vestibular neurons generally lack eye position signals that are processed and stored within the nucleus prepositus hypoglossi.


Asunto(s)
Encéfalo/fisiología , Movimientos Oculares , Neuronas/fisiología , Vestíbulo del Laberinto/fisiología , Potenciales de Acción , Animales , Encéfalo/citología , Carpa Dorada , Tiempo de Reacción , Vestíbulo del Laberinto/citología , Vestíbulo del Laberinto/inervación
18.
Biol Open ; 7(10)2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30127095

RESUMEN

Passive and interactive virtual reality (VR) environments are becoming increasingly popular in the field of behavioral neuroscience. While the technique was originally developed for human observers, corresponding applications have been adopted for the research of visual-driven behavior and neural circuits in animals. RGB color reproduction using red, green and blue primary color pixels is generally calibrated for humans, questioning if the distinct parameters are also readily transferable to other species. In particular, a visual image in the RGB color space has a clearly defined contrast pattern for humans, but this may not necessarily be the case for other mammals or even non-mammalian species, thereby impairing any interpretation of color-related behavioral or neuronal results. Here, we present a simple method to estimate the sensitivity of animals to the three primary colors of digital display devices based on the performance of object motion-driven visuo-motor reflexes and demonstrate differences in the color sensitivity between Xenopus laevis and Ambystoma mexicanum (Axolotl).This article has an associated First Person interview with the first author of the paper.

19.
Data Brief ; 18: 882-885, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29900254

RESUMEN

In this data article, this dataset included raw data of head and eye movement that collected by Polhemus (Polhemus Inc) and SmartEye (Smart Eye AB) equipment. Subjects who have driver license participated in this experiment. The experiment was conducted with a driving simulator that was controlled by CarSim (Mechanical simulation Co., Anna Arbor, MI) with the vehicle motion. This data set not only contained the eye and head movement but also had eye gaze, pupil diameter, saccades, and so on. It can be used for the parameter identification of the vestibulor-ocular reflex (VOR) model, simulation eye movement, as well as running other analysis related to eye movement.

20.
Neurosci Lett ; 671: 33-37, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29410359

RESUMEN

Optokinetic reflex (OKR) responses provide a convenient means to evaluate visual, integrative and oculomotor function in larval zebrafish. We measured multiple aspects of the OKR response in zebrafish exposed systemically to compounds altering signaling at GABAA receptors in order to derive quantitative concentration-response relationships. The GABAA antagonist picrotoxin caused concentration-dependent decreases in reflex gain, saccade velocity, saccade amplitude, interocular concordance and interocular gain. Conversely, the GABAA agonist gaboxadol provoked increases in reflex gain, saccade velocity, saccade amplitude and ocular range at low concentrations, and decreases in some of these parameters at higher concentrations. These data show that GABAA signaling influences multiple aspects of the OKR (including gain, generation of saccades, and coordination between the two eyes) and provide proof of concept that quantitative OKR analysis can be used as a tool for chemical biology and neuropharmacology applications.


Asunto(s)
Agonistas de Receptores de GABA-A/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Isoxazoles/farmacología , Nistagmo Optoquinético/efectos de los fármacos , Picrotoxina/farmacología , Reflejo/efectos de los fármacos , Movimientos Sacádicos/efectos de los fármacos , Animales , Estimulación Luminosa , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA