Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(37): 43259-43271, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35856741

RESUMEN

Photocatalytic fuel cells (PFCs) are considered the next generation of energy converter devices, since they can harvest solar energy through relatively low-cost semiconductor material to convert the chemical energy of renewable fuels and oxidants directly into electricity. Here, we report black TiO2 nanoparticle (NP) photoanodes for simple single-compartment PFCs and microfluidic photo fuel cells (µPFCs) fed by methanol. We show that Ti3+ and oxygen vacancy (OV) defects at the TiO2 NPs are easily controlled by annealing in a NaBH4-containing atmosphere. This optimized noble-metal-free black TiO2 photoanode shows superior PFC performance for methanol oxidation and O2 reduction with a maximum power density (Pmax) ∼2000% higher compared to the undoped TiO2. At flow conditions, the black TiO2 photoanode showed a Pmax ∼90 times higher than the µFC equipped with regular TiO2 in the dark. The PFC and µPFC operate spontaneously with little activation polarization, and black TiO2 photoanodes are stable under light irradiation. The improved photoactivity of the black TiO2 photoanode is a consequence of the self-doping with Ti3+/OV defects, which significantly red-shifted the bandgap energy, induced intragap electronic states, and widened both the valence band and conduction band, enhancing the overall absorption of visible light and decreasing the interfacial charge transfer resistance.

2.
Sensors (Basel) ; 22(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35808495

RESUMEN

In this work, we investigated a platform for real-time emulsion droplet detection and size measurement in optofluidic platforms. An 8.2 µm core diameter input optical fiber and a multi-mode Gradient Refractive Index (GRIN) output fiber were integrated into an acrylic microfluidic channel platform consisting of three layers. Water-in-oil emulsions were investigated, since relevant applications have emerged in the recent past for these types of emulsions, such as drug encapsulation as well as droplet-based Polymerase Chain Reaction (PCR) amplification of DNA, among others. The main contribution of this work is in understanding the main physical phenomena (i.e., total internal reflection, refraction, and interference) behind the complex transmittance pattern obtained for these droplets. For this purpose, a frequency domain electromagnetic wave propagation modelling of the structure using the Finite Element Method (FEM) was used along with experimental measurements.


Asunto(s)
Microfluídica , Agua , Emulsiones/química , Tamaño de la Partícula , Reacción en Cadena de la Polimerasa , Agua/química
3.
ACS Appl Mater Interfaces ; 12(49): 54563-54572, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33252214

RESUMEN

The combination of a fuel cell and photocatalysis in the same device, called a photo fuel cell, is the next generation of energy converters. These systems aim to convert organic pollutants and oxidants into energy using solar energy as the driving force. However, they are mostly designed in conventional stationary batch systems, generating low power besides being barely applicable. In this context, membraneless microfluidics allows the use of flow, porous electrodes, and mixed media, improving reactant utilization and output power accordingly. Here, we report an unprecedented reusable three-dimensional (3D) printed microfluidic photo fuel cell (µpFC) assembled with low-content PtOx/Pt dispersed on a BiVO4 photoanode and a Pt/C dark cathode, both immobilized on carbon paper. We use fused deposition modeling for additive manufacturing a US$ 2.5 µpFC with a polylactic acid filament. The system shows stable colaminar flow and a short time light distance. As a proof-of-concept, we used the pollutant-model rhodamine B as fuel, and O2 in an acidic medium at the cathode side. The mixed-media 3D printed µpFC with porous electrodes produces remarkable 0.48 mW cm-2 and 4.09 mA cm-2 as maximum power and current densities, respectively. The system operates continuously for more than 5 h and converts 73.6% rhodamine by photoelectrochemical processes. The 3D printed µpFC developed here shows promising potential for pollutant mitigation concomitantly to power generation, besides being a potential platform of tests for new (photo)electrocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA