Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hered ; 114(5): 492-503, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37119054

RESUMEN

This article relates to breeding programs that seek to manage genetic diversity. The method maximizes a multicomponent objective function, applicable across breeding scenarios. However, this paper focuses on breeding decisions following immigration of 10 unrelated individuals into a highly inbred simulated population (F ≈ 0.34). We use Optimal Contribution Selection to maximize retention of genetic diversity. However, some treatments add Coancestry Assortative Mating (CAM). This helps to avoid early dilution of immigrant genetic material, maximizing its ability to contribute to genetic diversity in the longer term. After 20 generations, this resulted in considerably increased genetic diversity, with mean coancestries 59% of what random pairing gave. To manage progeny inbreeding, common practice is to reject matings above an upper limit. As a suboptimal rules-based approach, this resulted in 26% decreased genetic diversity and 8% increased inbreeding in the long term, compared with random pairing. In contrast, including mean progeny inbreeding as a continuous variable in the overall objective function decreased final inbreeding by 37% compared with random pairing. Adding some emphasis on selection for a single trait resulted in a similar pattern of effects on coancestry and inbreeding, with 12% higher trait response under CAM. Results indicate the properties of alternative methods, but we encourage users to do their own investigations of particular scenarios, such as including inbreeding depression. Practical implementation of these methods is discussed: they have been widely adopted in domestic animal breeding and are highly flexible to accommodate a wide range of technical and logistical objectives and constraints.


Asunto(s)
Endogamia , Selección Genética , Animales , Modelos Genéticos , Reproducción
2.
Plants (Basel) ; 12(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36679096

RESUMEN

Crop breeding must achieve higher rates of genetic gain in grain yield (GY) and yield stability to meet future food demands in a changing climate. Optimal contributions selection (OCS) based on an index of key economic traits should increase the rate of genetic gain while minimising population inbreeding. Here we apply OCS in a global spring oilseed rape (canola) breeding program during three cycles of S0,1 family selection in 2016, 2018, and 2020, with several field trials per cycle in Australia and Canada. Economic weights in the index promoted high GY, seed oil, protein in meal, and Phoma stem canker (blackleg) disease resistance while maintaining plant height, flowering time, oleic acid, and seed size and decreasing glucosinolate content. After factor analytic modelling of the genotype-by-environment interaction for the additive effects, the linear rate of genetic gain in GY across cycles was 0.059 or 0.087 t ha-1 y-1 (2.9% or 4.3% y-1) based on genotype scores for the first factor (f1) expressed in trait units or average predicted breeding values across environments, respectively. Both GY and yield stability, defined as the root-mean-square deviation from the regression line associated with f1, were predicted to improve in the next cycle with a low achieved mean parental coancestry (0.087). These methods achieved rapid genetic gain in GY and other traits and are predicted to improve yield stability across global spring canola environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA