Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 21836, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294337

RESUMEN

We explore the dynamics of nonlinear parametric generation and light beam propagation in a Landau-quantized graphene structure with three energy levels interacting with two laser pulses, utilizing the Maxwell-Bloch equations. By applying a laser field to one transition of the graphene sample while keeping the second beam initially absent, the distinctive preparation of the graphene sample, coupled with its weak interaction with laser radiation, results in the parametric generation of a new laser beam in a different transition. We investigate the influence of diverse system parameters on both the efficiency of the generated beam and the propagation dynamics of both beams. Our findings reveal that manipulating these parameters can induce oscillations in the intensity of propagated beams, mitigate absorption losses during propagation allowing for earlier relaxation, and enhance the efficiency of energy transfer from the initial to the generated beam. Additionally, we demonstrate the transfer of optical vortices within the graphene ensemble by introducing an optical vortex to the initial beam. This scheme holds promise for applications in high-dimensional quantum information processing.

2.
Chirality ; 36(5): e23677, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38752253

RESUMEN

Electrons in circular motion emit electromagnetic radiation and lose their energy and angular momentum, both of which are carried away by the radiation field. Electromagnetic radiation from such electrons is not only circularly polarized but also, in general, possessing helical phase structure, the former of which corresponds to spin angular momentum and the latter orbital angular momentum. Based on the classical electrodynamics, we show that the chiral topological property related to the orbital angular momentum arises from deformation of the electromagnetic field due to the relativistic effect.

3.
Nano Lett ; 24(12): 3654-3660, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38498929

RESUMEN

Optical vortices with spin and orbital angular momentum (SAM and OAM) states offer multiple degrees of freedom for manipulating optical fields and thus enable great potentials in optical information processing. Recently, the optical metasurface has become an important platform for vortex beam generation and steering. However, the strong spin-orbit interaction on such metasurfaces usually leads to spin locked OAM generation, which limits the complete control of the angular momentum state of light. Here, we propose to solve this constraint using geometric phase controlled nonlinear chiroptical metasurfaces. The metasurface consists of two types of plasmonic meta-atoms which have opposite handedness and exhibit a strong spin-dependent circular dichroism effect. By encoding specific phase singularities and phase gradients to different channels, we experimentally demonstrate the spin unlocked second harmonic beam steering. The proposed nonlinear chiroptical metasurfaces may have important applications in developing multifunctional nonlinear optical devices.

4.
Materials (Basel) ; 17(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38473615

RESUMEN

Optical vortex arrays are characterized by specific orbital angular momentums, and they have important applications in optical trapping and manipulation, optical communications, secure communications, and high-security information processing. Despite widespread research on optical vortex arrays, the 2 µm wavelength range remains underexplored. Pulsed lasers at 2 µm are vital in laser medicine, sensing, communications, and nonlinear optic applications. The need for 2 µm-pulsed structured optical vortices, combining the advantages of this wavelength range and optical vortex arrays, is evident. Therefore, using just three elements in the cavity, we demonstrate a compact self-Q-switched Tm:YALO3 vortex laser by utilizing the self-modulation effect of a laser crystal and a defect spot mirror. By tuning the position of the defect spot and the output coupler, the resonator delivers optical vortex arrays with phase singularities ranging from 1 to 4. The narrowest pulse widths of the TEM00 LG0,-1, two-, three-, and four-vortex arrays are 543, 1266, 1281, 2379, and 1615 ns, respectively. All the vortex arrays in our study have relatively high-power outputs, slope efficiencies, and single-pulse energies. This work paves the way for a 2 µm-pulsed structured light source that has potential applications in optical trapping and manipulation, free-space optical communications, and laser medicine.

5.
Proc Natl Acad Sci U S A ; 121(12): e2319465121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38466854

RESUMEN

In conventional thin materials, the diffraction limit of light constrains the number of waveguide modes that can exist at a given frequency. However, layered van der Waals (vdW) materials, such as hexagonal boron nitride (hBN), can surpass this limitation due to their dielectric anisotropy, exhibiting positive permittivity along one optic axis and negativity along the other. This enables the propagation of hyperbolic rays within the material bulk and an unlimited number of subdiffractional modes characterized by hyperbolic dispersion. By employing time-domain near-field interferometry to analyze ultrafast hyperbolic ray pulses in thin hBN, we showed that their zigzag reflection trajectories bound within the hBN layer create an illusion of backward-moving and leaping behavior of pulse fringes. These rays result from the coherent beating of hyperbolic waveguide modes but could be mistakenly interpreted as negative group velocities and backward energy flow. Moreover, the zigzag reflections produce nanoscale (60 nm) and ultrafast (40 fs) spatiotemporal optical vortices along the trajectory, presenting opportunities to chiral spatiotemporal control of light-matter interactions. Supported by experimental evidence, our simulations highlight the potential of hyperbolic ray reflections for molecular vibrational absorption nanospectroscopy. The results pave the way for miniaturized, on-chip optical spectrometers, and ultrafast optical manipulation.

6.
Nano Lett ; 24(3): 943-949, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38198687

RESUMEN

Spatiotemporal optical vortices (STOVs) with swirling phase singularities in space and time hold great promise for a wide range of applications across diverse fields. However, current approaches to generate STOVs lack integrability and rely on bulky free-space optical components. Here, we demonstrate routine STOV generation by harnessing the topological darkness phenomenon of a photonic crystal slab. Complete polarization conversion enforced by symmetry enables topological darkness to arise from photonic bands of guided resonances, imprinting vortex singularities onto an ultrashort reflected pulse. Utilizing time-resolved spatial mapping, we provide the first observation of STOV generation using a photonic crystal slab, revealing the imprinted STOV structure manifested as a curved vortex line in the pulse profile in space and time. Our work establishes photonic crystal slabs as a versatile and accessible platform for engineering STOVs and harnessing the topological darkness in nanophotonics.

7.
Sensors (Basel) ; 23(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067905

RESUMEN

Vortex beams carrying orbital angular momentum (OAM) have gained much interest in optical communications because they can be used to expand the number of multiplexing channels and greatly improve the transmission capacity. However, the number of states used for OAM-based communication is generally limited by the imperfect OAM generation, transmission, and demultiplexing methods. In this work, we proposed a dense space-division multiplexing (DSDM) scheme to further increase the transmission capacity and transmission capacity density of free space optical communications with a small range of OAM modes exploiting a multi-ring perfect vortex (MRPV). The proposed MRPV is generated using a pixel checkerboard complex amplitude modulation method that simultaneously encodes amplitude and phase information in a phase-only hologram. The four rings of the MRPV are mutually independent channels that transmit OAM beams under the condition of occupying only one spatial position, and the OAM mode transmitted in these spatial channels can be efficiently demodulated using a multilayer annular aperture. The effect of atmospheric turbulence on the MRPV was also analyzed, and the results showed that the four channels of the MRPV can be effectively separated under weak turbulence conditions. Under the condition of limited available space and OAM states, the proposed DSDM strategy exploiting MRPV might inspire wide optical communication applications exploiting the space dimension of light beams.

8.
Nanomaterials (Basel) ; 13(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37836321

RESUMEN

In this work, we have achieved an advancement by integrating wide-angle capacity into vortex beams with an impressive topological charge (TC) of 12. This accomplishment was realized through the meticulous engineering of a propagation-phase-designed metasurface. Comprising gallium nitride (GaN), meta-structures characterized by their high-aspect ratio, this metasurface exhibits an average co-polarization transmission efficiency, reaching a remarkable simulated value of up to 97%. The intricate spiral patterns, along with their respective quantification, have been meticulously investigated through tilt-view scanning electron microscopy (SEM) and were further analyzed through the Mach-Zehnder interferometer. A captivating revelation emerged, a distinctive petal-like interference pattern manifests prior to the metasurface's designed focal distance. The occurrence of this petal-like pattern at a specific z-axis position prompts a deliberate manipulation of the helicity of the spiral branches. This strategic helicity alteration is intrinsically tied to the achievement of a minimized donut diameter at the designed focal length. In regard to the angular capability of the device, the captured images continuously showcase prominent attributes within incident angles spanning up to 30 degrees. However, as incident angles surpass the 30-degree threshold, the measured values diverge from their corresponding theoretical projections, resulting in a progressive reduction in the completeness of the donut-shaped structure.

9.
Chirality ; 35(11): 899-913, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37403618

RESUMEN

Recently, a variety of mechanisms have been discovered that extend the range of optical techniques for identifying and characterizing molecular chirality, beyond those associated with optical polarization. It is now evident that beams of light with a twisted wavefront, known as optical vortices, can also interact with chiral matter with a specificity determined by relative handedness. Exploring this chiral sensitivity of vortex light in its interactions with matter requires careful consideration of the symmetry properties that engage in such processes. Most of the familiar measures of chirality are directly applicable to either matter, or to light itself-but only to one or the other. To elicit the principles that determine the viability of distinctly optical vortex-based forms of chiral discrimination invites a more universal approach to symmetry analysis, as is afforded by the common, fundamental physics of CPT symmetry. Taking this approach supports a comprehensive and straightforward analysis to identify the mechanistic origins of vortex chiroptical interactions. Careful inspection of selection rules for absorption also elicits the principles governing any identifiable engagement with vortex structures, providing a reliable basis to ascertain the viability of other forms of enantioselective vortex interaction.

10.
Micromachines (Basel) ; 14(4)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37421021

RESUMEN

The tight focusing of an optical vortex with an integer topological charge (TC) and linear polarization was considered. We showed that the longitudinal components of the spin angular momentum (SAM) (it was equal to zero) and orbital angular momentum (OAM) (it was equal to the product of the beam power and the TC) vectors averaged over the beam cross-section were separately preserved during the beam propagation. This conservation led to the spin and orbital Hall effects. The spin Hall effect was expressed in the fact that the areas with different signs of the SAM longitudinal component were separated from each other. The orbital Hall effect was marked by the separation of the regions with different rotation directions of the transverse energy flow (clockwise and counterclockwise). There were only four such local regions near the optical axis for any TC. We showed that the total energy flux crossing the focus plane was less than the total beam power since part of the power propagated along the focus surface, while the other part crossed the focus plane in the opposite direction. We also showed that the longitudinal component of the angular momentum (AM) vector was not equal to the sum of the SAM and the OAM. Moreover, there was no summand SAM in the expression for the density of the AM. These quantities were independent of each other. The distributions of the AM and the SAM longitudinal components characterized the orbital and spin Hall effects at the focus, respectively.

11.
Micromachines (Basel) ; 14(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37241652

RESUMEN

We obtain a transform that relates the standard Bessel-Gaussian (BG) beams with BG beams described by the Bessel function of a half-integer order and quadratic radial dependence in the argument. We also study square vortex BG beams, described by the square of the Bessel function, and the products of two vortex BG beams (double-BG beams), described by a product of two different integer-order Bessel functions. To describe the propagation of these beams in free space, we derive expressions as series of products of three Bessel functions. In addition, a vortex-free power-function BG beam of the mth order is obtained, which upon propagation in free space becomes a finite superposition of similar vortex-free power-function BG beams of the orders from 0 to m. Extending the set of finite-energy vortex beams with an orbital angular momentum is useful in searching for stable light beams for probing the turbulent atmosphere and for wireless optical communications. Such beams can be used in micromachines for controlling the movements of particles simultaneously along several light rings.

12.
Nanomaterials (Basel) ; 13(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36985988

RESUMEN

Integrating multiple independent functions into a single optical component is one of the most important topics in research on photoelectric systems. In this paper, we propose a multifunctional all-dielectric metasurface that can achieve a variety of non-diffractive beams depending on the polarization state of the incident light. Using the anisotropic TiO2 rectangular column as the unit structure, the three functions of generating polygonal Bessel vortex beams under left-handed circularly polarized incidence, Airy vortex beams under right-handed circularly polarized incidence and polygonal Airy vortex-like beams under linearly polarized incidence are realized. In addition, the number of polygonal beam sides and the position of focal plane can be adjusted. The device could facilitate further developments in scaling complex integrated optical systems and fabricating efficient multifunctional components.

13.
Nanomaterials (Basel) ; 13(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36770573

RESUMEN

Recently, the realization of the spiral mass transfer of matter has attracted the attention of many researchers. Nano- and microstructures fabricated with such mass transfer can be used for the generation of light with non-zero orbital angular momentum (OAM) or the sensing of chiral molecules. In the case of metals and semiconductors, the chirality of formed spiral-shaped microstructures depends on the topological charge (TC) of the illuminating optical vortex (OV) beam. The situation is quite different with polarization-sensitive materials such as azopolymers, azobenzene-containing polymers. Azopolymers show polarization-sensitive mass transfer both at the meso and macro levels and have huge potential in diffractive optics and photonics. Previously, only one-spiral patterns formed in thin azopolymer films using circularly polarized OV beams and double-spiral patterns formed using linearly polarized OV beams have been demonstrated. In these cases, the TC of the used OV beams did not affect the number of formed spirals. In this study, we propose to use two-beam (an OV and a Gaussian beam with a spherical wavefront) interference lithography for realization spiral mass transfer with the desired number of formed spirals. The TC of the OV beam allows for controlling the number of formed spirals. We show the microstructures fabricated by the laser processing of thin azopolymer films can be used for the generation of OAM light at the microscale with the desired TC. The experimentally obtained results are in good agreement with the numerically obtained results and demonstrate the potential of the use of such techniques for the laser material processing of polarization-sensitive materials.

14.
Micromachines (Basel) ; 13(10)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36296062

RESUMEN

In optical computing machines, many parameters of light beams can be used as data carriers. If the data are carried by optical vortices, the information can be encoded by the vortex topological charge (TC). Thus, some optical mechanisms are needed for performing typical arithmetic operations with topological charges. Here, we investigate the superposition of a single-ringed (zero-radial-index) Laguerre-Gaussian (LG) beam with an off-axis Gaussian beam in the waist plane. Analytically, we derive at which polar angles intensity nulls can be located and define orders of the optical vortices born around these nulls. We also reveal which of the vortices contribute to the total TC of the superposition and which are compensated for by the opposite-sign vortices. If the LG beam has a TC of m, TC of the superposition is analytically shown to equal [m/2] or [m/2] + 1, where [] means an integer part of the fractional number. Thus, we show that the integer division of the TC by two can be done by superposing the LG beam with an off-axis Gaussian beam. Potential application areas are in optical computing machines and optical data transmission.

15.
Nanomaterials (Basel) ; 12(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36234604

RESUMEN

The highly localized and uneven spatial distribution of the subwavelength light field in metal metasurfaces provides a promising means for the generation of optical vortices (OVs) with arbitrary topological charges. In this paper, a simple and reliable way for generating multichannel OVs on gold nanoporous metasurfaces is reported. The instantaneous field of arbitrary-order OVs can be regulated and concentrated on the same focal surface by adapting photonic spin-orbit interaction (SOI) and geometric phase. The focal ring energy distribution of OVs along the conical propagation path is accurately calculated, and the double phase of units induced by spin rotation is confirmed. Based on the parameter optimization of the nanohole arrangement, the simultaneous amplitude and phase modulation of multichannel OVs has been realized. Furthermore, the average multichannel signal-to-noise ratio exceeds 15 dB, which meets the requirements of high resolution and low crosstalk. Our study obtains broadband and efficient OVs, which can contribute to improving the capacity storage and security of optical information and possess great application prospects in beam shaping, optical tweezers, and communication coding.

16.
Nanomaterials (Basel) ; 12(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35957033

RESUMEN

A combined high-aperture metalens in a thin silicon nitride film that consists of two tilted sectored metalenses is considered. Each sector of the metalens consists of a set of binary subwavelength gratings. The diameter of the metalens is 14 µm. Using a time-domain finite difference method, we show that the metalens can simultaneously detect optical vortices with two topological charges -1 and -2, almost over the entire spectrum of visible wavelengths. The metalens can distinguish several wavelengths that are focused at different points in the focal plane due to a 1-nm change in wavelength resulting in a focal spot shift of about 4 nm. When the metalens is illuminated by a Gaussian beam with left-handed circular polarization, two optical vortices with topological charges 1 and 2 are simultaneously formed 6-µm apart at the focal distance of 6 µm.

17.
Sensors (Basel) ; 22(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35808290

RESUMEN

Blood coagulation is a complicated dynamic process that maintains the blood's fluid state and prevents uncontrollable bleeding. The real-time monitoring of coagulation dynamics is critical for blood transfusion guidance, emergency management of trauma-induced coagulopathy, perioperative bleeding, and targeted hemostatic therapy. Here, we utilize optical vortex dynamics to detect the blood coagulation dynamic process in a rapid and non-contact manner. To characterize the temporal changes in viscoelastic properties of blood during coagulation, we track the stochastic motion of optical vortices in the time-varying speckles reflected from 100 blood samples with varied coagulation profiles. The mean square displacement (MSD) of the vortices increases nonlinearly with time lag during blood coagulation reminiscent of the particles in viscoelastic fluids. The MSD curves with coagulation time are similar to the tracings of thromboelastography (TEG) during the blood coagulation. The retrieved coagulation parameters, such as reaction time and activated clotting time measured using the optical vortex method, exhibit a close correlation to those parameters acquired from TEG. These results demonstrate the feasibility of the optical vortex method for monitoring blood coagulation at the point of care. Our method is also applicable to measuring the viscoelasticity of complex fluids and turbid soft matters.


Asunto(s)
Trastornos de la Coagulación Sanguínea , Tromboelastografía , Coagulación Sanguínea , Trastornos de la Coagulación Sanguínea/diagnóstico , Trastornos de la Coagulación Sanguínea/etiología , Pruebas de Coagulación Sanguínea , Hemorragia/terapia , Humanos , Tromboelastografía/efectos adversos , Tromboelastografía/métodos
18.
Micromachines (Basel) ; 13(7)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35888823

RESUMEN

Circular airy vortex beams (CAVBs) have attracted much attention due to their "abruptly autofocusing" effect, phase singularity, and their potential applications in optical micromanipulation, communication, etc. In this paper, we numerically investigated the propagation properties of circular airy beams (CABs) imposed with different optical vortices (OVs) along the optical axis of a uniaxial crystal for the first time. Like other common beams, a left-hand circular polarized (LHCP) CAVB, propagating along the optical axis in a uniaxial crystal, can excite a right-hand circular polarized (RHCP) component superimposed with an on-axis vortex of topological charge (TC) number of 2. When the incident beam is an LHCP CAB imposed with an on-axis vortex of TC number of l = 1, both of the two components have an axisymmetric intensity distribution during propagation and form hollow beams near the focal plane because of the phase singularity. The phase pattern shows that the LHCP component carries an on-axis vortex of TC number of l = 1, while the RHCP component carries an on-axis vortex of TC number of l = 3. With a larger TC number (l = 3), the RHCP component has a larger hollow region in the focal plane compared to the LHCP component. We also studied cases of CABs imposed with one and two off-axis OVs. The off-axis OV makes the CAVB's profile remain asymmetric throughout the propagation. As the propagation distance increases, the off-axis OVs move near the center of the beam and overlap, resulting in a special intensity and phase distribution near the focal plane.

19.
Nano Lett ; 22(12): 4712-4717, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35671461

RESUMEN

Spin-valley coupling in monolayer transition-metal dichalcogenides gives rise to valley polarization and coherence effect, limited by intervalley scattering caused by exciton-phonon, exciton-impurity, and electron-hole exchange interactions (EHEIs). We explore an approach to tune the EHEI by controlling the exciton center of mass momentum (COM) utilizing the photon distribution of higher-order optical vortex beams. By virtue of this, we have observed exciton-COM-dependent valley depolarization and decoherence, which gives us the ability to probe the valley relaxation time scale in a steady-state measurement. Our steady-state technique to probe the valley dynamics can open up a new paradigm to explore the physics of excitons in two-dimensional systems.

20.
Nanoscale Res Lett ; 17(1): 44, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35380308

RESUMEN

An integrated device capable of generating large number of multiplexed optical vortex beams with arbitrary topological charge is considered as one of the crucial requirement for driving information photonics forward. Here we report a simple method for simultaneous generation of 100 multiplexed optical vortex beams from a polymer film of size 1 mm2 and thickness of 30 µm. This is achieved through a combination of computer-generated holography, digital hologram printing and photoisomeric polymers. When the fabricated sample is illuminated with a collimated laser beam, a pre-determined vortex array with arbitrary topological charge is emitted. The polymer film easy to synthesize and exhibits a diffraction efficiency of 30% with a retention period longer than 50 days.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA