Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mSystems ; 7(3): e0002822, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35638356

RESUMEN

UniFrac is an important tool in microbiome research that is used for phylogenetically comparing microbiome profiles to one another (beta diversity). Striped UniFrac recently added the ability to split the problem into many independent subproblems, exhibiting nearly linear scaling but suffering from memory contention. Here, we adapt UniFrac to graphics processing units using OpenACC, enabling greater than 1,000× computational improvement, and apply it to 307,237 samples, the largest 16S rRNA V4 uniformly preprocessed microbiome data set analyzed to date. IMPORTANCE UniFrac is an important tool in microbiome research that is used for phylogenetically comparing microbiome profiles to one another. Here, we adapt UniFrac to operate on graphics processing units, enabling a 1,000× computational improvement. To highlight this advance, we perform what may be the largest microbiome analysis to date, applying UniFrac to 307,237 16S rRNA V4 microbiome samples preprocessed with Deblur. These scaling improvements turn UniFrac into a real-time tool for common data sets and unlock new research questions as more microbiome data are collected.


Asunto(s)
Bacterias , Microbiota , ARN Ribosómico 16S/genética , Bacterias/genética , Microbiota/genética
2.
Front Big Data ; 32020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32954255

RESUMEN

Spatial cross-matching operation over geospatial polygonal datasets is a highly compute-intensive yet an essential task to a wide array of real-world applications. At the same time, modern computing systems are typically equipped with multiple processing units capable of task parallelization and optimization at various levels. This mandates for the exploration of novel strategies in the geospatial domain focusing on efficient utilization of computing resources, such as CPUs and GPUs. In this paper, we present a CPU-GPU hybrid platform to accelerate the cross-matching operation of geospatial datasets. We propose a pipeline of geospatial subtasks that are dynamically scheduled to be executed on either CPU or GPU. To accommodate geospatial datasets processing on GPU using pixelization approach, we convert the floating point-valued vertices into integer-valued vertices with an adaptive scaling factor as a function of the area of minimum bounding box. We present a comparative analysis of GPU enabled cross-matching algorithm implementation in CUDA and OpenACC accelerated C++. We test our implementations over Natural Earth Data and our results indicate that although CUDA based implementations provide better performance, OpenACC accelerated implementations are more portable and extendable while still providing considerable performance gain as compared to CPU. We also investigate the effects of input data size on the IO / computation ratio and note that a larger dataset compensates for IO overheads associated with GPU computations. Finally we demonstrate that an efficient cross-matching comparison can be achieved with a cost-effective GPU.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA