Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202415331, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39301773

RESUMEN

Helicene diradical derivatives have attracted widespread attentions because of their unique magnetic and chiroptoelectronic properties, however, crystalline and enantiomerically pure forms of helicene diradicals are extremely rare. Herein, we describe the rational design and synthesis of o-quinone functionalized helicene diradicals with crystalline enantiomerical purity. Diradical dianion salt Rac-3K and its enantiomers P/M-3K were obtained by reduction of corresponding precursors Rac-3 and P/M-3 with two equivalent potassium graphite in THF in the presence of (di)benzo-18-crown-6. Neutral dioxoborocyclic helicene diradicals (Rac-3B and P/M-3B) were produced by reactions of Rac-3 or P/M-3 with chlorobis(perfluorophenyl)borane (B(C6F5)2Cl. Crystal structures of compounds Rac-3K, Rac-3B and P/M-3K were obtained by single crystal X-ray diffraction. Their open-shell singlet state ground states were confirmed by electron paramagnetic resonance (EPR) spectroscopy, superconducting quantum interference device (SQUID) measurements and theoretical calculations. Their chiroptical properties were investigated by the electronic circular dichroism (ECD) spectroscopy. This work provides the first examples of enantiopure helicene diradical dianions and boron-containing helicene diradicals.

2.
Adv Sci (Weinh) ; : e2406800, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39234816

RESUMEN

Open-shell organic radical semiconductor materials have received increasing attention in recent years due to their distinctive properties compared to the traditional materials with closed-shell singlet ground state. However, their poor chemical and photothermal stability in ambient conditions remains a significant challenge, primarily owing to their high reactivity with oxygen. Herein, a novel open-shell poly(3,4-dioxythiophene) radical PTTO2 is designed and readily synthesized for the first time using low-cost raw material via a straightforward BBr3-demethylation of the copolymer PTTOMe2 precursor. The open-shell character of PTTO2 is carefully studied and confirmed via the signal-silent 1H nuclear magnetic resonance spectrum, highly enhanced electron spin resonance signal compared with PTTOMe2, as well as the ultra-wide ultraviolet-visible-near nfraredUV-vis-NIR absorption and other technologies. Interestingly, the powder of PTTO2 exhibits an extraordinary absorption range spanning from 300 to 2500 nm and can reach 274 °C under the irradiation of 1.2 W cm-2, substantially higher than the 108 °C achieved by PTTOMe2. The low-cost PTTO2 stands as one of the best photothermal conversion materials among the pure organic photothermal materials and provides a new scaffold for the design of stable non-doped open-shell polymers.

3.
Angew Chem Int Ed Engl ; : e202409149, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087465

RESUMEN

A novel resonance-assisted self-doping mechanism has been demonstrated in ladder-type oligoaniline-derived organic conductors. The new class of compounds has a unique structure incorporating acidic phenolic hydroxyl groups into the ladder-type cyclohexadiene-1,4-diimine core, enabling efficient proton transfer and self-doping without the need for external dopants. Mechanistic studies and computational studies confirm the open-shell, zwitterionic nature of the self-doped state and the significant role played by the dielectric environment. This new self-doping mechanism allows for higher stability and durability in the material's electronic performance. The self-doped form retains durability under harsh conditions and maintains its properties over extended periods of time.

4.
Chemistry ; : e202403029, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140842

RESUMEN

Diradicals based on a meta-quinodimethane (m-QDM) scaffold generally have a triplet ground state and are rather scarce. Herein, m-QDM-based non-Kekulé diradicals [3,3'-(NHC)2BP] (3-NHC) (NHC = SIPr = C{N(Dipp)CH2}2; IPr = C{N(Dipp)CH}2, Me-IPr = C{N(Dipp)CMe}2; Dipp = 2,6-iPr2C6H3; BP = 1,1'-C6H3C6H3) featuring N-heterocyclic carbene (NHC) pendants are reported as crystalline solids. The EPR spectra of 3-NHC show both allowed (Dms = 1) and forbidden (Dms = 2; 'half-field') transitions characteristic for triplet diradicals. Variable temperature EPR studies however reveal a singlet ground state for 3-SIPr. Consistent with the EPR spectra, calculations predict a remarkably small (open-shell) singlet-triplet energy gap (ΔEST ≤ 0.26 kcal/mol) for the 3-NHC compounds. The calculated singlet diradical character for the ground states of the 3-NHC compounds amounts to ~99%.

5.
Angew Chem Int Ed Engl ; 63(36): e202408510, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38881362

RESUMEN

A triskelion-shaped triradical triindeno[1,2-a:1',2'-g : 1'',2''-m]triphenylen-7-yl (1) and its internally fused derivative (2) obtained by oxidative cyclization were prepared in a straightforward synthetic sequence. Both compounds were confirmed to be triradicals and to possess intramolecular antiferromagnetic exchange interactions between spins, displaying a spin-frustrated doublet ground state with doublet-quartet energy gaps of -0.14 kcal/mol for 1 and -0.06 kcal/mol for 2. Despite their open-shell character, they were sufficiently stable to be handled under ambient conditions on a timescale of days. Both compounds could be reversibly reduced to mono-, di-, and trianions and oxidized to 1+ and 22+, with strong NIR absorptions (1800 to over 3200 nm) observed for all open-shell ions.

6.
ACS Nano ; 18(24): 15898-15904, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38833667

RESUMEN

We report the generation of a nonbenzenoid polycyclic conjugated hydrocarbon, which consists of a biphenyl moiety substituted by indenyl units at the 4,4' positions, on ultrathin sodium chloride films by tip-induced chemistry. Single-molecule characterization by scanning tunneling and atomic force microscopy reveals an open-shell biradical ground state with a peculiar electronic configuration wherein the singly occupied molecular orbitals (SOMOs) are lower in energy than the highest occupied molecular orbital (HOMO).

7.
Chemphyschem ; : e202400342, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38807571

RESUMEN

Some years ago, Jishan Wu reported the synthesis of 8MC and 10MC, two homologues of the cyclopenta-ring-fused oligo(m-phenylene) macrocycles mMC, each behaving as an annulene-within-an-annulene (AWA). This was a surprising result as the AWA behavior is rare. Both molecules have a partial polyradical character, enforced by the quest for restoring some aromatic character of benzene rings. However, that restoration brings back some coupling between the two annulenes. Indeed, we found that the geometry and the magnetically induced currents indicate that, while 8MC does have an AWA character, this is not the case of the larger 10MC. Limitations of the design strategy of AWA molecules should be taken into account in future attempts to prepare novel large coronenes.

8.
Angew Chem Int Ed Engl ; 63(25): e202402375, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38619528

RESUMEN

Open-shell conjugated polymers with a high intrinsic conductivity and high-spin ground state hold considerable promise for applications in organic electronics and spintronics. Herein, two novel acceptor-acceptor (A-A) conjugated polymers based on a highly electron-deficient quinoidal benzodifurandione unit have been developed, namely DPP-BFDO-Th and DPP-BFDO. The incorporation of the quinoidal moiety into the polymers backbones enables deeply aligned lower-lying lowest unoccupied molecular orbital (LUMO) levels of below -4.0 eV. Notably, DPP-BFDO exhibits an exceptionally low LUMO (-4.63 eV) and a high-spin ground state characterized by strong diradical characters. Moreover, a self-doping through intermolecular charge-transfer is observed for DPP-BFDO, as evidenced by X-ray photoelectron spectroscopy (XPS) studies. The high carrier concentration in combination with a planar and linear conjugated backbone yields a remarkable electrical conductivity (σ) of 1.04 S cm-1 in the "undoped" native form, ranking among the highest values reported for n-type radical-based conjugated polymers. When employed as an n-type thermoelectric material, DPP-BFDO achieves a power factor of 12.59 µW m-1 K-2. Furthermore, upon n-doping, the σ could be improved to 65.68 S cm-1. This study underscores the great potential of electron-deficient quinoidal units in constructing dopant-free n-type conductive polymers with a high-spin ground state and exceptional intrinsic conductivity.

9.
Chempluschem ; 89(7): e202400132, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38548656

RESUMEN

This study explores the remarkable properties of liquescent open-shell ionic molecular systems, emphasizing the magnetic and photophysical characteristics arising from their associated structures in the condensed state under various conditions. Well-investigated open-shell molecules, namely, phenothiazine, dihydrophenazine, and tetrathiafulvalene radical cations, and bis(malononitriledithiolato)nickel(III) anionic complexes were examined, and the concept of liquescent open-shell ionic molecular systems was devised. Transformations in their associated structures are induced by external stimuli, resulting in significant variations in their physical properties. These experimental findings open new avenues for exploring and applying stimuli-responsive molecule-based materials.

10.
Angew Chem Int Ed Engl ; 63(27): e202402800, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38411404

RESUMEN

π-Conjugated chiral nanorings with intriguing electronic structures and chiroptical properties have attracted considerable interests in synthetic chemistry and materials science. We present the design principles to access new chiral macrocycles (1 and 2) that are essentially built on the key components of main-group electron-donating carbazolyl moieties or the π-expanded aza[7]helicenes. Both macrocycles show the unique molecular conformations with a (quasi) figure-of-eight topology as a result of the conjugation patterns of 2,2',7,7'-spirobifluorenyl in 1 and triarylamine-coupled aza[7]helicene-based building blocks in 2. This electronic nature of redox-active, carbazole-rich backbones enabled these macrocycles to be readily oxidized chemically and electrochemically, leading to the sequential production of a series of positively charged polycationic open-shell cyclophanes. Their redox-dependent electronic states of the resulting multispin polyradicals have been characterized by VT-ESR, UV/Vis-NIR absorption and spectroelectrochemical measurements. The singlet (ΔES-T=-1.29 kcal mol-1) and a nearly degenerate singlet-triplet ground state (ΔES-T(calcd)=-0.15 kcal mol-1 and ΔES-T(exp)=0.01 kcal mol-1) were proved for diradical dications 12+2⋅ and 22+2⋅, respectively. Our work provides an experimental proof for the construction of electron-donating new chiral nanorings, and more importantly for highly charged polyradicals with potential applications in chirospintronics and organic conductors.

11.
Angew Chem Int Ed Engl ; 63(13): e202318185, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38299925

RESUMEN

The incorporation of non-benzenoid motifs in graphene nanostructures significantly impacts their properties, making them attractive for applications in carbon-based electronics. However, understanding how specific non-benzenoid structures influence their properties remains limited, and further investigations are needed to fully comprehend their implications. Here, we report an on-surface synthetic strategy toward fabricating non-benzenoid nanographenes containing different combinations of pentagonal and heptagonal rings. Their structure and electronic properties were investigated via scanning tunneling microscopy and spectroscopy, complemented by computational investigations. After thermal activation of the precursor P on the Au(111) surface, we detected two major nanographene products. Nanographene Aa-a embeds two azulene units formed through oxidative ring-closure of methyl substituents, while Aa-s contains one azulene unit and one Stone-Wales defect, formed by the combination of oxidative ring-closure and skeletal ring-rearrangement reactions. Aa-a exhibits an antiferromagnetic ground state with the highest magnetic exchange coupling reported up to date for a non-benzenoid containing nanographene, coexisting with side-products with closed shell configurations resulted from the combination of ring-closure and ring-rearragement reactions (Ba-a , Ba-s , Bs-a and Bs-s ). Our results provide insights into the single gold atom assisted synthesis of novel NGs containing non-benzenoid motifs and their tailored electronic/magnetic properties.

12.
Angew Chem Int Ed Engl ; 63(9): e202317091, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38192200

RESUMEN

The character of the electronic structure of acenes has been the subject of longstanding discussion. However, convincing experimental evidence of their open-shell character has so far been missing. Here, we present the on-surface synthesis of tridecacene molecules by thermal annealing of octahydrotridecacene on a Au(111) surface. We characterized the electronic structure of the tridecacene by scanning probe microscopy, which reveals the presence of an inelastic signal at 126 meV. We attribute the inelastic signal to spin excitation from the singlet diradical ground state to the triplet excited state. To rationalize the experimental findings, we carried out many-body ab initio calculations as well as model Hamiltonians to take into account the effect of the metallic substrate. Moreover, we provide a detailed analysis of how the dynamic electron correlation and virtual charge fluctuation between the molecule and metallic surface reduces the singlet-triplet band gap. Thus, this work provides the first experimental confirmation of the magnetic character of tridecacene.

13.
Angew Chem Int Ed Engl ; 63(11): e202320144, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38243691

RESUMEN

The exploration of annulene's conformation, electronic properties and aromaticity has generated enduring interest over the years, yet it continues to present formidable challenges for annulenes with more than ten carbon atoms. In this study, we present the synthesis of a stable [10]cyclo-para-phenylmethine derivative (1), which bears a resemblance to [10]annulene. 1 can be readily oxidized into its respective cations, wherein electrons are effectively delocalized along the backbone, resulting in different conformations and aromaticity. Both 1 and its tetracation (14+ ⋅ 4SbF6 - ) exhibit a nearly planar conformation with a rectangular shape, akin to the E,Z,E,Z,Z-[10]annulene. In contrast, the radical cation (1⋅+ ⋅ SbCl6 - ) possesses a doubly twisted Hückel topology. Furthermore, the dication (12+ ⋅ 2SbCl6 - ) displays conformational flexibility in solution and crystalizes with the simultaneous presence of Möbius-twisted (1a2+ ⋅ 2SbCl6 - ) and Hückel-planar (1b2+ ⋅ 2SbCl6 - ) isomers in its unit cell. Detailed experimental measurements and theoretical calculations reveal that: (1) 1 demonstrates localized aromaticity with an alternating benzenoid/quinoid structure; (2) 1a2+ ⋅ 2SbCl6 - and 1b2+ ⋅ 2SbCl6 - with 48π electrons are weakly Möbius aromatic and Hückel antiaromatic, respectively; (3) 14+ ⋅ 4SbF6 - exhibits Hückel aromaticity (46π) and open-shell diradical character.

14.
ACS Nano ; 17(24): 24901-24909, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38051766

RESUMEN

The low-energy electronic structure of nanographenes can be tuned through zero-energy π-electron states, typically referred to as zero-modes. Customizable electronic and magnetic structures have been engineered by coupling zero-modes through exchange and hybridization interactions. Manipulation of the energy of such states, however, has not yet received significant attention. We find that attaching a five-membered ring to a zigzag edge hosting a zero-mode perturbs the energy of that mode and turns it into an off-zero mode: a localized state with a distinctive electron-accepting character. Whereas the end states of typical 7-atom-wide armchair graphene nanoribbons (7-AGNRs) lose their electrons when physisorbed on Au(111) (due to its high work function), converting them into off-zero modes by introducing cyclopentadienyl five-membered rings allows them to retain their single-electron occupation. This approach enables the magnetic properties of 7-AGNR end states to be explored using scanning tunneling microscopy (STM) on a gold substrate. We find a gradual decrease of the magnetic coupling between off-zero mode end states as a function of GNR length, and evolution from a more closed-shell to a more open-shell ground state.

15.
Angew Chem Int Ed Engl ; 62(51): e202314982, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37924227

RESUMEN

Molecular carbons (MCs) are molecular cutouts of carbon materials. Doping with heteroatoms and constructing open-shell structures are two powerful approaches to achieve unexpected and unique properties of MCs. Herein, we disclose a new strategy to design open-shell boron-doped MCs (BMCs), namely by pentagon-fusion of an organoborane π-system. We synthesized two diradicaloid BMC molecules that feature C24 B and C38 B π-skeletons containing a pentagonal ring. A thorough investigation reveals that such pentagon-fusion not only leads to their local antiaromaticity, but also incorporates an internal quinoidal substructure and thereby induces open-shell singlet diradical states. Moreover, their fully fused structures enable efficient π conjugation, which is expanded over the whole frameworks. Consequently, some intriguing physical properties are achieved, such as narrow energy gaps, very broad light absorptions, and superior photothermal capability, along with excellent photostability. Notably, the solid of the C38 B molecule exhibits absorption that covers the range of 300-1200 nm and an efficiency of 93.5 % for solar-driven water evaporation, thus demonstrating the potential of diradicaloid BMCs as high-performance organic photothermal materials.

16.
Nano Lett ; 23(20): 9353-9359, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37819646

RESUMEN

Phenalenyl is a radical nanographene with a triangular shape hosting an unpaired electron with spin S = 1/2. The open-shell nature of the phenalenyl is expected to be retained in covalently bonded networks. As a first step, we report synthesis of the phenalenyl dimer by combining in-solution synthesis and on-surface activation and its characterization on Au(111) and on a NaCl decoupling layer by means of inelastic electron tunneling spectroscopy (IETS). IETS shows inelastic steps that are identified as singlet-triplet excitation arising from interphenalenyl exchange. Spin excitation energies with and without the NaCl decoupling layer are 48 and 41 meV, respectively, indicating significant renormalization due to exchange with Au(111) electrons. Furthermore, third-neighbor hopping-induced interphenalenyl hybridization is fundamental to explaining the position-dependent bias asymmetry of the inelastic steps and activation of kinetic interphenalenyl exchange. Our results pave the way for bottom-up synthesis of S = 1/2 spin-lattices with large exchange interactions.

17.
Angew Chem Int Ed Engl ; 62(49): e202312538, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37843416

RESUMEN

Photodetectors are critical components in intelligent optoelectronic systems, and photomultiplication-capable devices are essential for detecting weak optical signals. Despite significant advances, developing photomultiplication-type organic photodetectors with high gain and low noise current simultaneously remains challenging. In this work, a new conjugated polymer PDN with singlet open-shell ground state is introduced in active layers for electron capture, and the corresponding PDN-based photodetectors exhibited an enhanced photoelectric gain and decreased dark current density at a low forward bias. At 1.5 V, the PDN-based ternary photodetector has the external quantum efficiency (EQE) up to 2552.3 % and the specific detectivity of 1.4×1014  Jones at 710 nm calculated by the measured noise current, with the gain 22 times higher than that of the control group. This study provides an approach for exploiting polymers with singlet open-shell ground state to enhance the gain of organic photodetectors.

18.
J Comput Chem ; 44(28): 2184-2211, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37530758

RESUMEN

Cyclopropane ring is a very common motif in organic/bio-organic compounds. The chemical bonding of this strained ring is taught to all chemistry students. This three-membered cyclic, C3 ring is quite reactive which has attracted both, synthetic and theoretical chemists to rationalize/correlate its stability and bonding with its reactivity and physical properties over a century. There are a few bonding models (mainly the Bent-Bond model and Walsh model) of this C3 ring that are debated to date. Herein, we have carried out energy decomposition analysis coupled with natural orbital for chemical valence (EDA-NOCV) to study the two most reactive bonds of cyclopropane rings of 49 different organic compounds containing different functional groups to obtain a much deeper bonding insight toward a more general bonding model of this class of compounds. The EDA-NOCV analyses of fragment orbitals and susequent bond formation revealed that the nature of the CC bond of the cyclopropane (splitting two bonds at a time out of three CC bonds) ring is preferred to form two dative covalent CC bonds (between a singlet olefin-fragment and an excited singlet carbene-fragment with a vacant sp2 orbital and a filled p-orbital) for the majority (37/49) of compounds over two covalent electron sharing bonds in some (7/49) compounds (between an excited triplet olefin and triplet carbene), while a few (5/49) compounds show flexibility to adopt either the electron sharing or dative covalent bond as both are equally possible. The effects of functional groups on the nature of chemical bond in cyclopropane rings have been studied in detail. Our bonding analyses are in line with the QTAIM analyses which produce small negative values of the Laplacian, significantly positive values of bond ellipticity, and accumulation of electron densities around the ring critical point of C3 -rings. These corresponding QTAIM parameters of C3 -rings are quite different for CC single bonds of normal hydrocarbons as expected. The chemical bonding in the majority of cyclopropane rings can be very similar to those of metal-olefin systems.

19.
Nano Lett ; 23(13): 5951-5958, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37384632

RESUMEN

Incorporating temperature- and air-stable organic radical species into molecular designs is a potentially advantageous means of controlling the properties of electronic materials. However, we still lack a complete understanding of the structure-property relationships of organic radical species at the molecular level. In this work, the charge transport properties of (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) radical-containing nonconjugated molecules are studied using single-molecule charge transport experiments and molecular modeling. Importantly, the TEMPO pendant groups promote temperature-independent molecular charge transport in the tunneling region relative to the quenched and closed-shell phenyl pendant groups. Results from molecular modeling show that the TEMPO radicals interact with the gold metal electrodes near the interface to facilitate a high-conductance conformation. Overall, the large enhancement of charge transport by incorporation of open-shell species into a single nonconjugated molecular component opens exciting avenues for implementing molecular engineering in the development of next-generation electronic devices based on novel nonconjugated radical materials.

20.
Molecules ; 28(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37375198

RESUMEN

The charged forms of π-conjugated chromophores are relevant in the field of organic electronics as charge carriers in optoelectronic devices, but also as energy storage substrates in organic batteries. In this context, intramolecular reorganization energy plays an important role in controlling material efficiency. In this work, we investigate how the diradical character influences the reorganization energies of holes and electrons by considering a library of diradicaloid chromophores. We determine the reorganization energies with the four-point adiabatic potential method using quantum-chemical calculations at density functional theory (DFT) level. To assess the role of diradical character, we compare the results obtained, assuming both closed-shell and open-shell representations of the neutral species. The study shows how the diradical character impacts the geometrical and electronic structure of neutral species, which in turn control the magnitude of reorganization energies for both charge carriers. Based on computed geometries of neutral and charged species, we propose a simple scheme to rationalize the small, computed reorganization energies for both n-type and p-type charge transport. The study is supplemented with the calculation of intermolecular electronic couplings governing charge transport for selected diradicals, further supporting the ambipolar character of the investigated diradicals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA