Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Biol Drug Des ; 102(4): 763-772, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37353860

RESUMEN

Trypanosomes and Leishmania are parasitic protozoans that affect millions of people globally. Herein we report the synthesis of 2-aroyl quinazolinones and their antiprotozoal efficacy against Trypanosoma brucei, Trypanosoma brucei rhodesiense, Trypanosoma cruzi, and Leishmania infantum. These compounds were counter-screened against a human cell line for cytotoxicity. Thirteen of the twenty target compounds in this study inhibited the growth of these parasites, with compounds KJ1, and KJ10 exhibiting IC50 values of 4.7 µM (T. b. brucei) and 1.1 µM (T. b. rhodesiense), respectively.


Asunto(s)
Antiprotozoarios , Leishmania infantum , Parásitos , Trypanosoma brucei brucei , Trypanosoma cruzi , Animales , Humanos , Quinazolinonas/farmacología , Antiprotozoarios/farmacología
2.
J Colloid Interface Sci ; 545: 8-15, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30861481

RESUMEN

The preparation of multifunctional composites that combine magnetic nanoparticles and supported nanomaterials has attracted great attention for various applications. In this work, a facile method was developed for the preparation of carbon nanotube (CNT)-based magnetic composites through a one-pot oxidation method using K2FeO4 as the oxidant, which was subsequently used as the reagent to generate the Fe3O4 nanoparticles and fabricate the magnetic CNT composites. This strategy could be performed at room temperature, so it is very mild and straightforward. The properties and structure of the as-fabricated CNT-Fe3O4 composites were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and vibrating sample magnetometry. The results suggested that this approach not only generated Fe3O4 magnetic nanoparticles on the surface of the CNTs but also produced a series of functional groups. In addition, the dried CNT-Fe3O4 composites were highly dispersible in water or organic solutions, and they also had a magnetic response that could satisfy the demand for magnetic separation. Finally, we adsorbed copper ions (Cu2+) and methylene blue (MB) using the CNT-Fe3O4 composites as adsorbents. The results indicated that the obtained composites could adsorb both Cu2+ and MB effectively. Taken together, we report a novel strategy for the fabrication of magnetic carbon nanotube composites through a facile oxidation and subsequent deposition procedure. These magnetic composites show great potential for the removal of environmental pollutants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA