Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(17)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39275106

RESUMEN

In order to investigate the interphase mass transfer and component distribution characteristics of the CO2-water system under micro-scale and nano-scale transport conditions, a micro-scale kinetic model representing interphase mass transfer in the CO2-water/saline system is developed in this paper. The molecular dynamics method is employed to delineate the diffusion and mass transfer processes of the system's components, revealing the extent of the effects of variations in temperature, pressure, and salt ion concentration on interphase mass transfer and component distribution characteristics. The interphase mass transfer process in the CO2-water system under transport conditions can be categorized into three stages: approach, adsorption, and entrance. As the system temperature rises and pressure decreases, the peak density of CO2 molecules at the gas-liquid interface markedly drops, with their aggregation reducing and their diffusion capability enhancing. The specific hydration structures between salt ions and water molecules hinder the entry of CO2 into the aqueous phase. Additionally, as the salt concentration in water increases, the density peak of CO2 molecules at the gas-liquid interface slightly increases, while the density value in the water phase region significantly decreases.

2.
Molecules ; 28(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38138439

RESUMEN

Carbon dioxide flooding is one of the main methods used to improve crude oil recovery. It can not only improve oil recovery but also reduce greenhouse gas emissions. However, the addition of carbon dioxide makes crude oil become a more complex multiphase fluid; that is, carbon dioxide flooding-produced fluid, in which CO2 and various components in crude oil mass transfer each other. This results in significant changes in the structure and properties of crude oil that increase the hazards associated with its gathering and transportation. Therefore, it is very important to explore the microscopic mechanism for the diffusion mass transfer of CO2 and crude oil in this fluid, especially during its gathering and transportation. In this study, the diffusion mass transfer process of CO2 and crude oil in fluids produced via CO2 flooding is studied using molecular dynamics, and the influences of temperature, gas-oil ratio and water content are explored. Observations of the configuration and dynamic behaviour of the system show that after the system reaches equilibrium, the majority of the CO2 molecules are distributed at the oil-water interface, and CO2 is more prone to diffusing into the oil phase than the water phase. Increases in temperature and water content inhibit, while increases in the gas-oil ratio promote, the diffusion mass transfer of CO2 in the crude oil system. The results of this study reveal the mechanism for the diffusion mass transfer of CO2 and crude oil in fluids produced via CO2 flooding and account for the influence of the water phase, which is consistent with actual production conditions and has certain guiding significance for the safe operation of oil and gas gathering and transportation.

3.
Polymers (Basel) ; 14(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35160533

RESUMEN

Reinforced thermoplastic composite pipes (RTPs) have been widely used for oil and gas gathering and transportation. Polyvinylidene fluoride (PVDF) has the greatest potential as a thermoplastic liner of RTPs due to its excellent thermal and mechanical properties. However, permeation of gases is inevitable in the thermoplastic liner, which may lead to blister failure of the liner and damage the safe operation of the RTPs. In order to clarify the permeation behavior and obtain the permeation mechanism of the mixture gas (CH4/CO2/H2S) in PVDF at the normal service conditions, molecular simulations were carried out by combining the Grand Canonical Monte Carlo (GCMC) method and the Molecular Dynamics (MD) method. The simulated results showed that the solubility coefficients of gases increased with the decrease in temperature and the increase in pressure. The adsorption isotherms of all gases were consistent with the Langmuir model. The order of the adsorption concentration for different gases was H2S > CO2> CH4. The isosteric heats of gases at all the actual service conditions were much less than 42 kJ/mol, which indicated that the adsorption for all the gases belonged to the physical adsorption. Both of the diffusion and permeation coefficients increased with the increase in temperature and pressure. The diffusion belonged to Einstein diffusion and the diffusion coefficients of each gas followed the order of CH4 > CO2 > H2S. During the permeation process, the adsorption of gas molecules in PVDF exhibited selective aggregation, and most of them were adsorbed in the low potential energy region of PVDF cell. The mixed-gas molecules vibrated within the hole of PVDF at relatively low temperature and pressure. As the temperature and pressure increase, the gas molecules jumped into the neighboring holes occasionally and then dwelled in the holes, moving around their equilibrium positions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA