Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Pharm Sin B ; 14(7): 2927-2941, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39027254

RESUMEN

Ensuring drug safety in the early stages of drug development is crucial to avoid costly failures in subsequent phases. However, the economic burden associated with detecting drug off-targets and potential side effects through in vitro safety screening and animal testing is substantial. Drug off-target interactions, along with the adverse drug reactions they induce, are significant factors affecting drug safety. To assess the liability of candidate drugs, we developed an artificial intelligence model for the precise prediction of compound off-target interactions, leveraging multi-task graph neural networks. The outcomes of off-target predictions can serve as representations for compounds, enabling the differentiation of drugs under various ATC codes and the classification of compound toxicity. Furthermore, the predicted off-target profiles are employed in adverse drug reaction (ADR) enrichment analysis, facilitating the inference of potential ADRs for a drug. Using the withdrawn drug Pergolide as an example, we elucidate the mechanisms underlying ADRs at the target level, contributing to the exploration of the potential clinical relevance of newly predicted off-target interactions. Overall, our work facilitates the early assessment of compound safety/toxicity based on off-target identification, deduces potential ADRs of drugs, and ultimately promotes the secure development of drugs.

2.
Comput Biol Med ; 178: 108781, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936075

RESUMEN

Accurately identifying potential off-target sites in the CRISPR/Cas9 system is crucial for improving the efficiency and safety of editing. However, the imbalance of available off-target datasets has posed a major obstacle in enhancing prediction performance. Despite several prediction models have been developed to address this issue, there remains a lack of systematic research on handling data imbalance in off-target prediction. This article systematically investigates the data imbalance issue in off-target datasets and explores numerous methods to process data imbalance from a novel perspective. First, we highlight the impact of the imbalance problem on off-target prediction tasks by determining the imbalance ratios present in these datasets. Then, we provide a comprehensive review of various sampling techniques and cost-sensitive methods to mitigate class imbalance in off-target datasets. Finally, systematic experiments are conducted on several state-of-the-art prediction models to illustrate the impact of applying data imbalance solutions. The results show that class imbalance processing methods significantly improve the off-target prediction capabilities of the models across multiple testing datasets. The code and datasets used in this study are available at https://github.com/gzrgzx/CRISPR_Data_Imbalance.


Asunto(s)
Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Humanos , Edición Génica/métodos
3.
Pharmacol Ther ; 257: 108636, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521246

RESUMEN

Due to the contribution of highly homologous acetyltransferases CBP and p300 to transcription elevation of oncogenes and other cancer promoting factors, these enzymes emerge as possible epigenetic targets of anticancer therapy. Extensive efforts in search for small molecule inhibitors led to development of compounds targeting histone acetyltransferase catalytic domain or chromatin-interacting bromodomain of CBP/p300, as well as dual BET and CBP/p300 inhibitors. The promising anticancer efficacy in in vitro and mice models led CCS1477 and NEO2734 to clinical trials. However, none of the described inhibitors is perfectly specific to CBP/p300 since they share similarity of a key functional domains with other enzymes, which are critically associated with cancer progression and their antagonists demonstrate remarkable clinical efficacy in cancer therapy. Therefore, we revise the possible and clinically relevant off-targets of CBP/p300 inhibitors that can be blocked simultaneously with CBP/p300 thereby improving the anticancer potential of CBP/p300 inhibitors and pharmacokinetic predicting data such as absorption, distribution, metabolism, excretion (ADME) and toxicity.


Asunto(s)
Histona Acetiltransferasas , Neoplasias , Ratones , Animales , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/uso terapéutico , Dominios Proteicos , Neoplasias/tratamiento farmacológico , Factores de Transcripción p300-CBP/metabolismo
4.
Arch Pharm (Weinheim) ; 357(5): e2300661, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38335311

RESUMEN

Drug discovery and design challenges, such as drug repurposing, analyzing protein-ligand and protein-protein complexes, ligand promiscuity studies, or function prediction, can be addressed by protein binding site similarity analysis. Although numerous tools exist, they all have individual strengths and drawbacks with regard to run time, provision of structure superpositions, and applicability to diverse application domains. Here, we introduce SiteMine, an all-in-one database-driven, alignment-providing binding site similarity search tool to tackle the most pressing challenges of binding site comparison. The performance of SiteMine is evaluated on the ProSPECCTs benchmark, showing a promising performance on most of the data sets. The method performs convincingly regarding all quality criteria for reliable binding site comparison, offering a novel state-of-the-art approach for structure-based molecular design based on binding site comparisons. In a SiteMine showcase, we discuss the high structural similarity between cathepsin L and calpain 1 binding sites and give an outlook on the impact of this finding on structure-based drug design. SiteMine is available at https://uhh.de/naomi.


Asunto(s)
Bases de Datos de Proteínas , Sitios de Unión , Ligandos , Diseño de Fármacos , Descubrimiento de Drogas , Proteínas/química , Proteínas/metabolismo , Unión Proteica , Conformación Proteica , Humanos , Catepsina L/metabolismo , Catepsina L/química , Catepsina L/antagonistas & inhibidores
5.
Toxics ; 11(10)2023 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-37888725

RESUMEN

The process of discovering small molecule drugs involves screening numerous compounds and optimizing the most promising ones, both in vitro and in vivo. However, approximately 90% of these optimized candidates fail during trials due to unexpected toxicity or insufficient efficacy. Current concepts with respect to drug-protein interactions suggest that each small molecule interacts with an average of 6-11 targets. This implies that approved drugs and even discontinued compounds could be repurposed by leveraging their interactions with unintended targets. Therefore, we developed a computational repurposing framework for small molecules, which combines artificial intelligence/machine learning (AI/ML)-based and chemical similarity-based target prediction methods with cross-species transcriptomics information. This repurposing methodology incorporates eight distinct target prediction methods, including three machine learning methods. By using multiple orthogonal methods for a "dataset" composed of 2766 FDA-approved drugs targeting multiple therapeutic target classes, we identified 27,371 off-target interactions involving 2013 protein targets (i.e., an average of around 10 interactions per drug). Relative to the drugs in the dataset, we identified 150,620 structurally similar compounds. The highest number of predicted interactions were for drugs targeting G protein-coupled receptors (GPCRs), enzymes, and kinases with 10,648, 4081, and 3678 interactions, respectively. Notably, 17,283 (63%) of the off-target interactions have been confirmed in vitro. Approximately 4000 interactions had an IC50 of <100 nM for 1105 FDA-approved drugs and 1661 interactions had an IC50 of <10 nM for 696 FDA-approved drugs. Together, the confirmation of numerous predicted interactions and the exploration of tissue-specific expression patterns in human and animal tissues offer insights into potential drug repurposing for new therapeutic applications.

6.
Comput Struct Biotechnol J ; 21: 5039-5048, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37867973

RESUMEN

The CRISPR/Cas9 system has significantly advanced the field of gene editing, yet its clinical application is constrained by the considerable challenge of off-target effects. Although numerous deep learning models for off-target prediction have been proposed, most struggle to effectively extract the nuanced features of guide RNA (gRNA) and DNA sequence pairs and to mitigate information loss during data transmission within the model. To address these limitations, we introduce a novel Hybrid Neural Network (HNN) model that employs a parallelized network structure to fully extract pertinent features from different positions and types of bases in the sequence to minimize information loss. Notably, this study marks the first application of word embedding techniques to extract information from sequence pairs that contain insertions and deletions (Indels). Comprehensive evaluation across diverse datasets indicates that our proposed model outperforms existing state-of-the-art prediction methods in off-target prediction. The datasets and source codes supporting this study can be found at https://github.com/Yang-k955/CRISPR-HW.

7.
Med ; 4(7): 478-492.e6, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37279759

RESUMEN

BACKGROUND: CRISPR (clustered regularly interspaced short palindromic repeats) genome editing holds tremendous potential in clinical translation. However, the off-target effect has always been a major concern. METHODS: Here, we have developed a novel sensitive and specific off-target detection method, AID-seq (adaptor-mediated off-target identification by sequencing), that can comprehensively and faithfully detect the low-frequency off targets generated by different CRISPR nucleases (including Cas9 and Cas12a). FINDINGS: Based on AID-seq, we developed a pooled strategy to simultaneously identify the on/off targets of multiple gRNAs, as well as using mixed human and human papillomavirus (HPV) genomes to screen the most efficient and safe targets from 416 HPV gRNA candidates for antiviral therapy. Moreover, we used the pooled strategy with 2,069 single-guide RNAs (sgRNAs) at a pool size of about 500 to profile the properties of our newly discovered CRISPR, FrCas9. Importantly, we successfully built an off-target detection model using these off-target data via the CRISPR-Net deep learning method (area under the receiver operating characteristic curve [AUROC] = 0.97, area under the precision recall curve [AUPRC] = 0.29). CONCLUSIONS: To our knowledge, AID-seq is the most sensitive and specific in vitro off-target detection method to date. And the pooled AID-seq strategy can be used as a rapid and high-throughput platform to select the best sgRNAs and characterize the properties of new CRISPRs. FUNDING: This work was supported by The National Natural Science Foundation of China (grant nos. 32171465 and 82102392), the General Program of Natural Science Foundation of Guangdong Province of China (grant no. 2021A1515012438), Guangdong Basic and Applied Basic Research Foundation (grant no. 2020A1515110170), and the National Ten Thousand Plan-Young Top Talents of China (grant no. 80000-41180002).


Asunto(s)
Sistemas CRISPR-Cas , Infecciones por Papillomavirus , Humanos , Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas , Infecciones por Papillomavirus/genética , Edición Génica/métodos , Genoma
8.
Front Bioeng Biotechnol ; 11: 1335901, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38260726

RESUMEN

Clustered regularly interspaced short palindromic repeat (CRISPR)-based genome editing (GED) technologies have unlocked exciting possibilities for understanding genes and improving medical treatments. On the other hand, Artificial intelligence (AI) helps genome editing achieve more precision, efficiency, and affordability in tackling various diseases, like Sickle cell anemia or Thalassemia. AI models have been in use for designing guide RNAs (gRNAs) for CRISPR-Cas systems. Tools like DeepCRISPR, CRISTA, and DeepHF have the capability to predict optimal guide RNAs (gRNAs) for a specified target sequence. These predictions take into account multiple factors, including genomic context, Cas protein type, desired mutation type, on-target/off-target scores, potential off-target sites, and the potential impacts of genome editing on gene function and cell phenotype. These models aid in optimizing different genome editing technologies, such as base, prime, and epigenome editing, which are advanced techniques to introduce precise and programmable changes to DNA sequences without relying on the homology-directed repair pathway or donor DNA templates. Furthermore, AI, in collaboration with genome editing and precision medicine, enables personalized treatments based on genetic profiles. AI analyzes patients' genomic data to identify mutations, variations, and biomarkers associated with different diseases like Cancer, Diabetes, Alzheimer's, etc. However, several challenges persist, including high costs, off-target editing, suitable delivery methods for CRISPR cargoes, improving editing efficiency, and ensuring safety in clinical applications. This review explores AI's contribution to improving CRISPR-based genome editing technologies and addresses existing challenges. It also discusses potential areas for future research in AI-driven CRISPR-based genome editing technologies. The integration of AI and genome editing opens up new possibilities for genetics, biomedicine, and healthcare, with significant implications for human health.

9.
Comput Struct Biotechnol J ; 20: 650-661, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35140885

RESUMEN

The CRISPR/Cas9 gene-editing system is the third-generation gene-editing technology that has been widely used in biomedical applications. However, off-target effects occurring CRISPR/Cas9 system has been a challenging problem it faces in practical applications. Although many predictive models have been developed to predict off-target activities, current models do not effectively use sequence pair information. There is still room for improved accuracy. This study aims to effectively use sequence pair information to improve the model's performance for predicting off-target activities. We propose a new coding scheme for coding sequence pairs and design a new model called CRISPR-IP for predicting off-target activity. Our coding scheme distinguishes regions with different functions in the sequence pairs through the function channel. Moreover, it distinguishes between bases and base pairs using type channels, effectively representing the sequence pair information. The CRISPR-IP model is based on CNN, BiLSTM, and the attention layer to learn features of sequence pairs. We performed performance verification on two data sets and found that our coding scheme can represent sequence pair information effectively, and the CRISPR-IP model performance is better than others. Data and source codes are available at https://github.com/BioinfoVirgo/CRISPR-IP.

10.
Genes (Basel) ; 12(12)2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34946828

RESUMEN

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9) system is a groundbreaking gene-editing tool, which has been widely adopted in biomedical research. However, the guide RNAs in CRISPR-Cas9 system may induce unwanted off-target activities and further affect the practical application of the technique. Most existing in silico prediction methods that focused on off-target activities possess limited predictive precision and remain to be improved. Hence, it is necessary to propose a new in silico prediction method to address this problem. In this work, a deep learning framework named R-CRISPR is presented, which devises an encoding scheme to encode gRNA-target sequences into binary matrices, a convolutional neural network as feature extractor, and a recurrent neural network to predict off-target activities with mismatch, insertion, or deletion. It is demonstrated that R-CRISPR surpasses six mainstream prediction methods with a significant improvement on mismatch-only datasets verified by GUIDE-seq. Compared with the state-of-art prediction methods, R-CRISPR also achieves competitive performance on datasets with mismatch, insertion, and deletion. Furthermore, experiments show that data concatenate could influence the quality of training data, and investigate the optimal combination of datasets.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Mutagénesis Insercional/genética , Aprendizaje Profundo , Eliminación de Gen , Redes Neurales de la Computación , ARN Guía de Kinetoplastida/genética
11.
Brief Bioinform ; 21(4): 1448-1454, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31267129

RESUMEN

For genome-wide CRISPR off-target cleavage sites (OTS) prediction, an important issue is data imbalance-the number of true OTS recognized by whole-genome off-target detection techniques is much smaller than that of all possible nucleotide mismatch loci, making the training of machine learning model very challenging. Therefore, computational models proposed for OTS prediction and scoring should be carefully designed and properly evaluated in order to avoid bias. In our study, two tools are taken as examples to further emphasize the data imbalance issue in CRISPR off-target prediction to achieve better sensitivity and specificity for optimized CRISPR gene editing. We would like to indicate that (1) the benchmark of CRISPR off-target prediction should be properly evaluated and not overestimated by considering data imbalance issue; (2) incorporation of efficient computational techniques (including ensemble learning and data synthesis techniques) can help to address the data imbalance issue and improve the performance of CRISPR off-target prediction. Taking together, we call for more efforts to address the data imbalance issue in CRISPR off-target prediction to facilitate clinical utility of CRISPR-based gene editing techniques.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica/métodos , Aprendizaje Automático
12.
Front Immunol ; 10: 2501, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31695703

RESUMEN

Adoptive T cell therapy using patient T cells redirected to recognize tumor-specific antigens by expressing genetically engineered high-affinity T-cell receptors (TCRs) has therapeutic potential for melanoma and other solid tumors. Clinical trials implementing genetically modified TCRs in melanoma patients have raised concerns regarding off-target toxicities resulting in lethal destruction of healthy tissue, highlighting the urgency of assessing which off-target peptides can be recognized by a TCR. As a model system we used the clinically efficacious NY-ESO-1-specific TCR C259, which recognizes the peptide epitope SLLMWITQC presented by HLA-A*02:01. We investigated which amino acids at each position enable a TCR interaction by sequentially replacing every amino acid position outside of anchor positions 2 and 9 with all 19 possible alternative amino acids, resulting in 134 peptides (133 altered peptides plus epitope peptide). Each peptide was individually evaluated using three different in vitro assays: binding of the NY-ESOc259 TCR to the peptide, peptide-dependent activation of TCR-expressing cells, and killing of peptide-presenting target cells. To represent the TCR recognition kernel, we defined Position Weight Matrices (PWMs) for each assay by assigning normalized measurements to each of the 20 amino acids in each position. To predict potential off-target peptides, we applied a novel algorithm projecting the PWM-defined kernel into the human proteome, scoring NY-ESOc259 TCR recognition of 336,921 predicted human HLA-A*02:01 binding 9-mer peptides. Of the 12 peptides with high predicted score, we confirmed 7 (including NY-ESO-1 antigen SLLMWITQC) strongly activate human primary NY-ESOc259-expressing T cells. These off-target peptides include peptides with up to 7 amino acid changes (of 9 possible), which could not be predicted using the recognition motif as determined by alanine scans. Thus, this replacement scan assay determines the "TCR fingerprint" and, when coupled with the algorithm applied to the database of human 9-mer peptides binding to HLA-A*02:01, enables the identification of potential off-target antigens and the tissues where they are expressed. This platform enables both screening of multiple TCRs to identify the best candidate for clinical development and identification of TCR-specific cross-reactive peptide recognition and constitutes an improved methodology for the identification of potential off-target peptides presented on MHC class I molecules.


Asunto(s)
Bioensayo , Epítopos de Linfocito T/análisis , Activación de Linfocitos , Péptidos/análisis , Receptores de Antígenos/inmunología , Linfocitos T/inmunología , Línea Celular Tumoral , Epítopos de Linfocito T/química , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Células HEK293 , Humanos , Péptidos/química , Péptidos/genética , Péptidos/inmunología , Receptores de Antígenos/genética , Linfocitos T/citología
13.
Acta Pharmacol Sin ; 40(9): 1138-1156, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30814658

RESUMEN

Serotonin (5-HT) receptors are proteins involved in various neurological and biological processes, such as aggression, anxiety, appetite, cognition, learning, memory, mood, sleep, and thermoregulation. They are commonly associated with drug abuse and addiction due to their importance as targets for various pharmaceutical and recreational drugs. However, due to a high sequence similarity/identity among 5-HT receptors and the unavailability of the 3D structure of the different 5-HT receptor, no report was available so far regarding the systematical comparison of the key and selective residues involved in the binding pocket, making it difficult to design subtype-selective serotonergic drugs. In this work, we first built and validated three-dimensional models for all 5-HT receptors based on the existing crystal structures of 5-HT1B, 5-HT2B, and 5-HT2C. Then, we performed molecular docking studies between 5-HT receptors agonists/inhibitors and our 3D models. The results from docking were consistent with the known binding affinities of each model. Sequentially, we compared the binding pose and selective residues among 5-HT receptors. Our results showed that the affinity variation could be potentially attributed to the selective residues located in the binding pockets. Moreover, we performed MD simulations for 12 5-HT receptors complexed with ligands; the results were consistent with our docking results and the reported data. Finally, we carried out off-target prediction and blood-brain barrier (BBB) prediction for Captagon using our established hallucinogen-related chemogenomics knowledgebase and in-house computational tools, with the hope to provide more information regarding the use of Captagon. We showed that 5-HT2C, 5-HT5A, and 5-HT7 were the most promising targets for Captagon before metabolism. Overall, our findings can provide insights into future drug discovery and design of medications with high specificity to the individual 5-HT receptor to decrease the risk of addiction and prevent drug abuse.


Asunto(s)
Receptores de Serotonina/metabolismo , Antagonistas de la Serotonina/metabolismo , Agonistas de Receptores de Serotonina/metabolismo , Sitios de Unión , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Farmacología/métodos , Receptores de Serotonina/química , Antagonistas de la Serotonina/química , Agonistas de Receptores de Serotonina/química
15.
Cell Rep ; 22(6): 1413-1423, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29425498

RESUMEN

Due to their specificity, efficiency, and ease of programming, CRISPR-associated nucleases are popular tools for genome editing. On the genomic scale, these nucleases still show considerable off-target activity though, posing a serious obstacle to the development of therapies. Off targeting is often minimized by choosing especially high-specificity guide sequences, based on algorithms that codify empirically determined off-targeting rules. A lack of mechanistic understanding of these rules has so far necessitated their ad hoc implementation, likely contributing to the limited precision of present algorithms. To understand the targeting rules, we kinetically model the physics of guide-target hybrid formation. Using only four parameters, our model elucidates the kinetic origin of the experimentally observed off-targeting rules, thereby rationalizing the results from both binding and cleavage assays. We favorably compare our model to published data from CRISPR-Cas9, CRISPR-Cpf1, CRISPR-Cascade, as well as the human Argonaute 2 system.


Asunto(s)
Algoritmos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , Edición Génica/métodos , Modelos Biológicos , Secuencia de Aminoácidos , Proteínas Argonautas/fisiología , Humanos , Cinética , Unión Proteica
16.
Methods Mol Biol ; 1338: 43-7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26443212

RESUMEN

Transcription activator-like effector nucleases (TALENs) can be exquisitely specific and highly effective genome editing reagents. Specificity and efficacy depend however on good design for minimal off-targeting and strong binding. Several online tools are accessible to aid in this process. Here, we tabulate those tools, noting their functions and key features.


Asunto(s)
Biología Computacional/métodos , Proteínas de Unión al ADN/genética , Marcación de Gen/métodos , Internet , Sitios de Unión/genética , Genoma , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA