Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.638
Filtrar
1.
Sensors (Basel) ; 24(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39275641

RESUMEN

Within the context of smart transportation and new infrastructure, Vehicle-to-Everything (V2X) communication has entered a new stage, introducing the concept of holographic intersection. This concept requires roadside sensors to achieve collaborative perception, collaborative decision-making, and control. To meet the high-level requirements of V2X, it is essential to obtain precise, rapid, and accurate roadside information data. This study proposes an automated vehicle distance detection and warning scheme based on camera video streams. It utilizes edge computing units for intelligent processing and employs neural network models for object recognition. Distance estimation is performed based on the principle of similar triangles, providing safety recommendations. Experimental validation shows that this scheme can achieve centimeter-level distance detection accuracy, enhancing traffic safety. This approach has the potential to become a crucial tool in the field of traffic safety, providing intersection traffic target information for intelligent connected vehicles (ICVs) and autonomous vehicles, thereby enabling V2X driving at holographic intersections.

2.
Behav Brain Res ; 476: 115249, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39260583

RESUMEN

BACKGROUND: Maternal separation (MS) in rodents is a paradigm of early life events that affects neurological development in depression. Adolescence is a time of dramatic increases in psychological vulnerability, and being female is a depression risk factor. However, data on whether different MS scenarios affect behavioral deficits and the potential mechanisms in adolescent female mice are limited. METHODS: C57BL/6 J female pups were exposed to different MS (no MS, NMS; MS for 15 min/day, MS15; or 180 min/day, MS180) from postnatal day (PND)1 to PND21 and subjected for behavioral tests during adolescence. Behavioural tests, specifically the open field test (OFT), novel object recognition test (NOR) test and tail suspension test (TST), were performed. The expression of proinflammatory cytokines, hippocampal neurogenesis, neuroinflammation, and gut microbiota were also assessed. RESULTS: The results showed that MS180 induced emotional behavioral deficits and object recognition memory impairment; however, MS15 promoted object recognition memory in adolescent females. MS180 decreased hippocampal neurogenesis of adolescent females, induced an increase in microgliosis, and increased certain inflammatory factors in the hippocampus, including TNF-α, IL-1ß, and IL-6. Furthermore, different MS altered gut microbiota diversity, and alpha diversity in the Shannon index was negatively correlated with the peripheral inflammatory factors TNF-α, IL-1ß, and IL-6. Species difference analysis showed that the gut microbiota composition of the phyla Desulfobacterota and Proteobacteria was affected by the MS. LIMITATIONS: The sex differences in adolescent animal and causality of hippocampal neurogenesis and gut microbiota under different MS need to be further analyzed in depression. CONCLUSION: This study indicates different MS affect recognition memory and emotional behaviors in adolescent females, and gut microbiota-neuroinflammation and hippocampal neurogenesis may be a potential site of early neurodevelopmental impairment in depression.

3.
Front Behav Neurosci ; 18: 1434489, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39257566

RESUMEN

The novel object recognition (NOR) paradigm is a cognitive test that has been used with many species to detect differences in ability. Various iterations of the paradigm have been implemented, making it difficult to compare results both within and across species. Interpretations of the results are equally diverse, threatening the integrity of the paradigm. These inconsistencies have prompted a deeper dive into the variability of the resultant data. For the purposes of this meta-analysis, data originated from 12 studies involving 367 pigs that were subjected to the same NOR paradigm beginning between postnatal days 21 and 24. The main cognitive measure from the NOR paradigm is recognition index (RI), which was the focus of most of the analyses in this meta-analysis. RI was chosen as the main outcome as it determines a pig's preference for novelty, an innate behavior of cognitively intact pigs. A histogram of RI values (range 0 to 1) showed a bimodal distribution skewed to the right, suggesting that the interpretation of positive performance on the task may need to be stricter. Correlational analyses proved that the number of investigations and investigation time with both the novel and familiar objects were the strongest predictors of resultant RI values. Objective data inclusion criteria were then considered to eliminate non-compliant pigs. Results indicated that requiring at least 5 s of investigation over a minimum of 3 investigations with the novel object reduced overall variability for RI with a concomitant increase in the mean. Further analyses showed that pigs preferred to spend more time with and interact more with the novel object across the entire testing trial, especially in the first minute. Together, these findings suggest that future interpretations of NOR should consider applying stricter statistical analyses as well as additional data processing, such as binning, with emphasis on novel object and familiar object investigation. Overall, modifications to the existing iterations of the NOR paradigm are necessary to improve paradigm reliability.

4.
Front Neurorobot ; 18: 1430155, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220587

RESUMEN

Introduction: Unmanned aerial vehicles (UAVs) are widely used in various computer vision applications, especially in intelligent traffic monitoring, as they are agile and simplify operations while boosting efficiency. However, automating these procedures is still a significant challenge due to the difficulty of extracting foreground (vehicle) information from complex traffic scenes. Methods: This paper presents a unique method for autonomous vehicle surveillance that uses FCM to segment aerial images. YOLOv8, which is known for its ability to detect tiny objects, is then used to detect vehicles. Additionally, a system that utilizes ORB features is employed to support vehicle recognition, assignment, and recovery across picture frames. Vehicle tracking is accomplished using DeepSORT, which elegantly combines Kalman filtering with deep learning to achieve precise results. Results: Our proposed model demonstrates remarkable performance in vehicle identification and tracking with precision of 0.86 and 0.84 on the VEDAI and SRTID datasets, respectively, for vehicle detection. Discussion: For vehicle tracking, the model achieves accuracies of 0.89 and 0.85 on the VEDAI and SRTID datasets, respectively.

5.
Front Hum Neurosci ; 18: 1401578, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39118817

RESUMEN

Tactile agnosia is the inability to recognize objects via haptic exploration, in the absence of an elementary sensory deficit. Traditionally, it has been described as a disturbance in extracting information about the physical properties of objects ("apperceptive agnosia") or in associating object representation with its semantic meaning ("associative agnosia"). However, tactile agnosia is a rare and difficult-to-diagnose condition, due to the frequent co-occurrence of sensorimotor symptoms and the lack of consensus on the terminology and assessment methods. Among tactile agnosia classifications, hyloagnosia (i.e., difficulty in quality discrimination of objects) and morphoagnosia (i.e., difficulty in shape and size recognition) have been proposed to account for the apperceptive level. However, a dissociation between the two has been reported in two cases only. Indeed, very few cases of pure tactile agnosia have been described, mostly associated with vascular damages in somatosensory areas, in pre- and postcentral gyrus, intraparietal sulcus, supramarginal gyrus, and insular cortex. An open question is whether degenerative conditions affecting the same areas could lead to similar impairments. Here, we present a single case of unilateral right-hand tactile agnosia, in the context of corticobasal syndrome (CBS), a rare neurodegenerative disease. The patient, a 55-year-old woman, initially presented with difficulties in tactile object recognition, apraxia for the right hand, and an otherwise intact cognitive profile. At the neuroimaging level, she showed a lesion outcome of a right parietal oligodendroglioma removal and a left frontoparietal atrophy. We performed an experimental evaluation of tactile agnosia, targeting every level of tactile processing, from elementary to higher order tactile recognition processes. We also tested 18 healthy participants as a matched control sample. The patient showed intact tactile sensitivity and mostly intact hylognosis functions. Conversely, she was impaired with the right hand in exploring geometrical and meaningless shapes. The patient's clinical evolution in the following 3 years became consistent with the diagnosis of CBS and unilateral tactile apperceptive agnosia as the primary symptom onset in the absence of a cognitive decline. This is the third case described in the literature manifesting morphoagnosia with almost completely preserved hylognosis abilities and the first description of such dissociation in a case with CBS.

6.
Nano Lett ; 24(32): 9937-9945, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39092599

RESUMEN

The processing of multicolor noisy images in visual neuromorphic devices requires selective absorption at specific wavelengths; however, it is difficult to achieve this because the spectral absorption range of the device is affected by the type of material. Surprisingly, the absorption range of perovskite materials can be adjusted by doping. Herein, a CdCl2 co-doped CsPbBr3 nanocrystal-based photosensitive synaptic transistor (PST) is reported. By decreasing the doping concentration, the response of the PST to short-wavelength light is gradually enhanced, and even weak light of 40 µW·cm-2 can be detected. Benefiting from the excellent color selectivity of the PST device, the device array is applied to feature extraction of target blue items and removal of red and green noise, which results in the recognition accuracy of 95% for the noisy MNIST data set. This work provides new ideas for the application of novel transistors integrating sensors and storage computing.

7.
Iperception ; 15(4): 20416695241265821, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148556

RESUMEN

Looking leads gaze to objects; seeing recognizes them. Visual crowding makes seeing difficult or impossible before looking brings objects to the fovea. Looking before seeing can be guided by saliency mechanisms in the primary visual cortex (V1). We have proposed that looking and seeing are mainly supported by peripheral and central vision, respectively. This proposal is tested in an observer with central vision loss due to macular degeneration, using a visual search task that can be accomplished solely through looking, but is actually impeded through seeing. The search target is an uniquely oriented, salient, bar among identically shaped bars. Each bar, including the target, is part of an " " X " shape. The target's " X is identical to, although rotated from, the other " X 's in the image, which normally causes confusion. However, this observer exhibits no such confusion, presumably because she cannot see the " X 's shape, but can look towards the target. This result demonstrates a critical dichotomy between central and peripheral vision.

9.
Horm Behav ; 165: 105618, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39180889

RESUMEN

Infusion of 17ß-estradiol (E2) into the dorsal hippocampus (DH) of ovariectomized (OVX) mice enhances memory consolidation, an effect that depends on rapid phosphorylation of extracellular signal-regulated kinase (ERK) and Akt. Astrocytic glutamate transporter 1 (GLT-1) modulates neurotransmission via glutamate uptake from the synaptic cleft. However, little is known about the contribution of DH astrocytes, and astrocytic glutamate transport, to the memory-enhancing effects of E2. This study was designed to test whether DH astrocytes contribute to estrogenic modulation of memory consolidation by determining the extent to which DH GLT-1 is necessary for E2 to enhance memory in object recognition and object placement tasks and trigger rapid phosphorylation events in DH astrocytes. OVX female mice were bilaterally cannulated into the DH or the DH and dorsal third ventricle (ICV). Post-training DH infusion of the GLT-1 inhibitor dihydrokainic acid (DHK) dose-dependently impaired memory consolidation in both tasks. Moreover, the memory-enhancing effects of ICV-infused E2 in each task were blocked by DH DHK infusion. E2 increased p42 ERK and Akt phosphorylation in DH astrocytes, and these effects were blocked by DHK. Results suggest the necessity of DH GLT-1 activity for object and spatial memory consolidation, and for E2 to enhance consolidation of these memories and to rapidly activate cell signaling in DH astrocytes. Findings indicate that astrocytic function in the DH of OVX females is necessary for memory formation and is regulated by E2, and suggest an essential role for DH astrocytic GLT-1 activity in the memory-enhancing effects of E2.


Asunto(s)
Astrocitos , Estradiol , Transportador 2 de Aminoácidos Excitadores , Ácido Glutámico , Hipocampo , Ovariectomía , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Femenino , Estradiol/farmacología , Ratones , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ácido Glutámico/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Consolidación de la Memoria/efectos de los fármacos , Consolidación de la Memoria/fisiología , Fosforilación/efectos de los fármacos , Memoria/efectos de los fármacos , Memoria/fisiología , Ratones Endogámicos C57BL , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Ácido Kaínico/análogos & derivados
10.
Artículo en Inglés | MEDLINE | ID: mdl-39209101

RESUMEN

Chromogranin A (CgA), a âˆ¼ 49 kDa acidic secretory protein, is ubiquitously distributed in endocrine and neuroendocrine cells and neurons. As a propeptide, CgA is proteolytically cleaved to generate several peptides of biological importance, including pancreastatin (PST: hCgA250-301), Vasostatin 1 (VS1: hCgA1-76), and catestatin (CST: CgA 352-372). VS1 represents the most conserved fragment of CgA. A 20 amino acid domain within VS1 (CgA 47-66) exhibits potent antimicrobial and anti-inflammatory activities. Autism is known to be associated with inflammation. Therefore, we seek to test the hypothesis that VS1 modulates autism behaviors by reducing inflammation in the hippocampus. Treatment of C57BL/6 (B6) and BTBR (a mouse model of idiopathic autism) mice with VS1 revealed the following: BTBR mice showed a significant decrease in chamber time in the presence of a stranger or a novel object. Treatment with VS1 significantly increased chamber time in both cases, underscoring a crucial role for VS1 in improving behavioral deficits in BTBR mice. In contrast to chamber time, sniffing time in BTBR mice in the presence of a stranger was less compared to B6 control mice. VS1 did not improve this latter parameter. Surprisingly, sniffing time in BTBR mice in the presence of a novel object was comparable with B6 mice. Proinflammatory cytokines such as IL-6 and IL-1b, as well as other inflammatory markers, were elevated in BTBR mice, which were dramatically reduced after supplementation with VS1. Interestingly, even Beclin-1/p62, pAKT/AKT, and p-p70-S6K/p70-S6K ratios were notably reduced by VS1. We conclude that VS1 plays a crucial role in restoring autistic spectrum disorders (ASD) plausibly by attenuating neuroinflammation.


Asunto(s)
Trastorno Autístico , Cromogranina A , Modelos Animales de Enfermedad , Hipocampo , Enfermedades Neuroinflamatorias , Fragmentos de Péptidos , Animales , Masculino , Ratones , Trastorno Autístico/tratamiento farmacológico , Trastorno Autístico/metabolismo , Cromogranina A/farmacología , Cromogranina A/metabolismo , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Fragmentos de Péptidos/farmacología
11.
Biomed Pharmacother ; 178: 117255, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39116785

RESUMEN

Alzheimer's disease (AD) is an age-dependent incurable neurodegenerative disorder accompanied by neuroinflammation, amyloid accumulation, and memory impairment. It begins decades before the first clinical symptoms appear, and identifying early biomarkers is key for developing disease-modifying therapies. We show now in a mouse model of AD that before any amyloid deposition the brains of 1.5-month-old mice contain increased levels of pro-inflammatory cytokines IL-1ß and IL-6, decreased levels of nicotinic acetylcholine receptors (nAChRs) in the brain and brain mitochondria and increased amounts of α7 nAChR-bound Aß1-42, along with impaired episodic memory and increased risk of apoptosis. Both acute (1-week-long) and chronic (4-month-long) treatments with α7-selective agonist PNU282987, starting at 1.5 months of age, were well tolerated. The acute treatment did not affect the levels of soluble Aß1-42 but consistently upregulated the α7 nAChR expression, decreased the level of α7-Aß1-42 complexes, and improved episodic memory of 1.5-month-old mice. The chronic treatment, covering the disease development phase, strongly upregulated the expression of all abundant brain nAChRs, reduced both free and α7-coupled Aß1-42 within the brain, had anti-inflammatory and antiapoptotic effects, and potently upregulated cognition, thus identifying α7 nAChRs as both early biomarker and potent therapeutic target for fighting this devastating disease.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Encéfalo , Modelos Animales de Enfermedad , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Ratones , Fragmentos de Péptidos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Compuestos Bicíclicos con Puentes/farmacología , Benzamidas/farmacología , Apoptosis/efectos de los fármacos
12.
J Psychiatr Res ; 178: 180-187, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39146821

RESUMEN

Schizophrenia is a complex neuropsychiatric disorder with positive, negative, and cognitive symptoms. In rats, sub-chronic administration of ketamine is used for the induction of schizophrenia model. Increased locomotor activity is one of the most important features of psychotic-like symptoms in rodents. On the other hand, risperidone is a potent antipsychotic medication that is approved for the treatment of schizophrenia and bipolar disorder. In the present research, we aimed to investigate the effect of sub-chronic treatment of ketamine on cognitive and behavioral functions, and brain-derived neurotrophic factor (BDNF) expression level in the prefrontal cortex. Also, we assessed the efficacy of risperidone on cognitive and behavioral impairments induced by ketamine. Possible sex differences were also measured. Ketamine was intraperitoneally injected at the dose of 30 mg/kg for five consecutive days. Risperidone was also intraperitoneally injected at the dose of 2 mg/kg. Novel object recognition memory, pain threshold, locomotor activity, rearing behavior, and BDNF level were evaluated. The results showed that ketamine injection for five consecutive days impaired the acquisition of long-term recognition memory and decreased BDNF level in the prefrontal cortex in both sexes. Also, it decreased pain threshold in females, increased rearing behavior in males, and induced hyperlocomotion with greater effect in females. On the other hand, risperidone restored or attenuated the effect of ketamine on all the behavioral effects and BDNF level. In conclusion, we suggested that there were sex differences in the effects of ketamine on pain perception, locomotion, and rearing behavior in a rat model of schizophrenia.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Modelos Animales de Enfermedad , Ketamina , Corteza Prefrontal , Risperidona , Esquizofrenia , Caracteres Sexuales , Animales , Ketamina/farmacología , Ketamina/administración & dosificación , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/inducido químicamente , Esquizofrenia/fisiopatología , Masculino , Femenino , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Risperidona/farmacología , Risperidona/administración & dosificación , Ratas , Antipsicóticos/farmacología , Antipsicóticos/administración & dosificación , Reconocimiento en Psicología/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Ratas Wistar , Conducta Animal/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Actividad Motora/efectos de los fármacos
13.
J Neurosci ; 44(36)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39138001

RESUMEN

Acetylation of histone proteins by histone acetyltransferases (HATs), and the resultant change in gene expression, is a well-established mechanism necessary for long-term memory (LTM) consolidation, which is not required for short-term memory (STM). However, we previously demonstrated that the HAT p300/CBP-associated factor (PCAF) also influences hippocampus (HPC)-dependent STM in male rats. In addition to their epigenetic activity, HATs acetylate nonhistone proteins involved in nongenomic cellular processes, such as estrogen receptors (ERs). Given that ERs have rapid, nongenomic effects on HPC-dependent STM, we investigated the potential interaction between ERs and PCAF for STM mediated by the dorsal hippocampus (dHPC). Using a series of pharmacological agents administered directly into the dHPC, we reveal a functional interaction between PCAF and ERα in the facilitation of short-term object-in-place memory in male but not female rats. This interaction was specific to ERα, while ERß agonism did not enhance STM. It was further specific to dHPC STM, as the effect was not present in the dHPC for LTM or in the perirhinal cortex. Further, while STM required local (i.e., dHPC) estrogen synthesis, the facilitatory interaction effect appeared independent of estrogens. Finally, western blot analyses demonstrated that PCAF activation in the dHPC rapidly (5 min) activated downstream estrogen-related cell signaling kinases (c-Jun N-terminal kinase and extracellular signal-related kinase). Collectively, these findings indicate that PCAF, which is typically implicated in LTM through epigenetic processes, also influences STM in the dHPC, possibly via nongenomic ER activity. Critically, this novel PCAF-ER interaction might exist as a male-specific mechanism supporting STM.


Asunto(s)
Receptor alfa de Estrógeno , Hipocampo , Memoria a Corto Plazo , Factores de Transcripción p300-CBP , Animales , Masculino , Femenino , Ratas , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Factores de Transcripción p300-CBP/metabolismo , Factores de Transcripción p300-CBP/genética , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Memoria a Corto Plazo/fisiología , Memoria a Corto Plazo/efectos de los fármacos , Ratas Sprague-Dawley , Caracteres Sexuales
14.
Sensors (Basel) ; 24(16)2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39204886

RESUMEN

To achieve Level 4 and above autonomous driving, a robust and stable autonomous driving system is essential to adapt to various environmental changes. This paper aims to perform vehicle pose estimation, a crucial element in forming autonomous driving systems, more universally and robustly. The prevalent method for vehicle pose estimation in autonomous driving systems relies on Real-Time Kinematic (RTK) sensor data, ensuring accurate location acquisition. However, due to the characteristics of RTK sensors, precise positioning is challenging or impossible in indoor spaces or areas with signal interference, leading to inaccurate pose estimation and hindering autonomous driving in such scenarios. This paper proposes a method to overcome these challenges by leveraging objects registered in a high-precision map. The proposed approach involves creating a semantic high-definition (HD) map with added objects, forming object-centric features, recognizing locations using these features, and accurately estimating the vehicle's pose from the recognized location. This proposed method enhances the precision of vehicle pose estimation in environments where acquiring RTK sensor data is challenging, enabling more robust and stable autonomous driving. The paper demonstrates the proposed method's effectiveness through simulation and real-world experiments, showcasing its capability for more precise pose estimation.

15.
J Neurophysiol ; 132(3): 628-642, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38958283

RESUMEN

Humans rely on predictive and integrative mechanisms during visual processing to efficiently resolve incomplete or ambiguous sensory signals. Although initial low-level sensory data are conveyed by feedforward connections, feedback connections are believed to shape sensory processing through automatic conveyance of statistical probabilities based on prior exposure to stimulus configurations. Individuals with autism spectrum disorder (ASD) show biases in stimulus processing toward parts rather than wholes, suggesting their sensory processing may be less shaped by statistical predictions acquired through prior exposure to global stimulus properties. Investigations of illusory contour (IC) processing in neurotypical (NT) adults have established a well-tested marker of contour integration characterized by a robust modulation of the visually evoked potential (VEP)-the IC-effect-that occurs over lateral occipital scalp during the timeframe of the visual N1 component. Converging evidence strongly supports the notion that this IC-effect indexes a signal with significant feedback contributions. Using high-density VEPs, we compared the IC-effect in 6- to 17-yr-old children with ASD (n = 32) or NT development (n = 53). Both groups of children generated an IC-effect that was equivalent in amplitude. However, the IC-effect notably onset 21 ms later in ASD, even though initial VEP afference was identical across groups. This suggests that feedforward information predominated during perceptual processing for 15% longer in ASD compared with NT children. This delay in the feedback-dependent IC-effect, in the context of known developmental differences between feedforward and feedback fibers, suggests a potential pathophysiological mechanism of visual processing in ASD, whereby ongoing stimulus processing is less shaped by visual feedback.NEW & NOTEWORTHY Children with autism often present with an atypical visual perceptual style that emphasizes parts or details over the whole. Using electroencephalography (EEG), this study identifies delays in the visual feedback from higher-order sensory brain areas to primary sensory regions. Because this type of visual feedback is thought to carry information about prior sensory experiences, individuals with autism may have difficulty efficiently using prior experience or putting together parts into a whole to help make sense of incoming new visual information. This provides empirical neural evidence to support theories of disrupted sensory perception mechanisms in autism.


Asunto(s)
Trastorno del Espectro Autista , Potenciales Evocados Visuales , Humanos , Adolescente , Niño , Masculino , Potenciales Evocados Visuales/fisiología , Femenino , Trastorno del Espectro Autista/fisiopatología , Electroencefalografía , Percepción de Forma/fisiología , Percepción Visual/fisiología
16.
Atten Percept Psychophys ; 86(6): 1897-1912, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38997576

RESUMEN

People differ in how well they search. What are the factors that might contribute to this variability? We tested the contribution of two cognitive abilities: visual working memory (VWM) capacity and object recognition ability. Participants completed three tasks: a difficult inefficient visual search task, where they searched for a target letter T among skewed L distractors; a VWM task, where they memorized a color array and then identified whether a probed color belonged to the previous array; and the Novel Object Memory Test (NOMT), where they learnt complex novel objects and then identified them amongst objects that closely resembled them. Exploratory and confirmatory factor analyses revealed that there are two latent factors that explain the shared variance among these three tasks: a factor indicative of the level of caution participants exercised during the challenging visual search task, and a factor representing their visual cognitive abilities. People who score high on the search cautiousness tend to perform a more accurate but slower search. People who score high on the visual cognitive ability factor tend to have a higher VWM capacity, a better object recognition ability, and a faster search speed. The results reflect two points: (1) Visual search tasks share components with visual working memory and object recognition tasks. (2) Search performance is influenced not only by the search display's properties but also by individual predispositions such as caution and general visual abilities. This study introduces new factors for consideration when interpreting variations in visual search behaviors.


Asunto(s)
Atención , Percepción de Color , Memoria a Corto Plazo , Reconocimiento Visual de Modelos , Humanos , Reconocimiento Visual de Modelos/fisiología , Masculino , Femenino , Adulto Joven , Tiempo de Reacción , Orientación , Adulto , Individualidad , Adolescente , Aptitud , Reconocimiento en Psicología
17.
Res Pharm Sci ; 19(2): 167-177, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39035579

RESUMEN

Background and purpose: Alzheimer's disease (AD) is a neurodegenerative disease specified by chronic and irreversible destruction of neurons. This study aimed to evaluate the effects of different extracts (aqueous, hydroalcoholic, hexane, and ethyl acetate) and manna of Echinops cephalotes (EC) on impaired cognitive function induced by scopolamine in mice. EC is shown to have anti-cholinesterase-butyrylcholinesterase activities. Experimental approach: In this study, aqueous and hydroalcoholic extracts, hexane and ethyl acetate fractions of EC (25, 50, 100 mg/kg, i.p.), and the manna (25, 50, 100 mg/kg, gavage) were administered for 14 days alongside scopolamine (0.7 mg/kg, i.p.). Rivastigmine (reference drug) was administered for 2 weeks i.p. Mice were tested for their memory function using two behavioral models, object recognition test (ORT) and passive avoidance test (PAT). Findings/Results: Administration of scopolamine significantly impaired memory function in both behavioral models. In the PAT model, all extracts at 50 and 100 mg/kg significantly reversed the effect of memory destruction caused by scopolamine. At a lower dose of 25 mg/kg, however, none of the extracts were able to significantly change the step-through latency time. In the ORT model, however, administration of all extracts at 50 and 100 mg/kg, significantly increased the recognition index. Only the manna and the aqueous extract at 25 mg/kg were able to reverse scopolamine-induced memory impairment. Conclusions and implications: These results suggest that all forms of EC extracts improve memory impairment induced by scopolamine comparably to rivastigmine. Whether the effects are sustained over a longer period remains to be tested in future work.

18.
Biology (Basel) ; 13(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39056739

RESUMEN

Early-life glucocorticoid overexposure induces diverse neurodevelopmental outcomes regarding stress reactivity and cognition. Increased fructose consumption has also been associated with alterations in cognitive capacity and behavior. The present study investigated the effects of prenatal dexamethasone exposure on synaptic plasticity, locomotion, anxiety, and recognition memory in adult male Wistar rat offspring, and whether these effects are potentiated by postnatal fructose consumption. Pregnant female rats were treated with dexamethasone during late gestation and male offspring were supplemented with a moderate dose of fructose. Recognition memory, locomotion, and anxiety-like behavior were assessed using a novel object recognition test, open-field test, and elevated plus maze, respectively. Hippocampal synaptic plasticity was estimated by the levels of growth-associated protein 43 (GAP-43), synaptophysin, postsynaptic density protein 95, calcium/calmodulin-dependent kinase IIα, and their activating phosphorylations. Additionally, protein levels of the glucocorticoid receptor (GR) and its transcriptionally active phosphorylated form were evaluated. Prenatal dexamethasone treatment induced an anxiolytic-like effect, stimulation of exploratory behavior, and novelty preference associated with an increase in GR and GAP-43 protein levels in the hippocampus. Fructose overconsumption after weaning did not modify the effects of prenatal glucocorticoid exposure. Applied prenatal dexamethasone treatment may induce changes in reactions to novel situations in male Wistar rats.

19.
Mol Neurobiol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037530

RESUMEN

Obesity and aging collectively potentiate inflammatory responses, particularly within the central nervous system. Managing obesity presents a significant challenge, even more so considering the context of aging. Caloric restriction (CR) has been extensively documented in the literature for its multiple health benefits. Motivated by these findings, we hypothesized that CR could serve as a valuable intervention to address the brain alterations and cognitive decline associated with obesity in aged rats. Our investigation revealed that cafeteria diet increased hippocampal and hypothalamic transcripts related to neuroinflammation, along with cognitive deficits determined in the object recognition test in 18-month-old male rats. Western blot data indicate that the obesogenic diet may disrupt the blood-brain barrier and lead to an increase in Toll-like receptor 4 in the hippocampus, events that could contribute to the cognitive deficits observed. Implementing CR after the onset of obesity mitigated neuroinflammatory changes and cognitive impairments. We found that CR increases GABA levels in the hippocampus of aged animals, as demonstrated by liquid chromatography coupled with mass spectrometry analysis. These findings underscore the potential of CR as a therapeutic opportunity to ameliorate the neuroinflammatory and cognitive alterations of obesity, especially in the context of aging.

20.
Front Psychol ; 15: 1402156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011287

RESUMEN

Previous studies showed that elongation and symmetry (two ubiquitous aspects of natural stimuli) are important attributes in object perception and recognition, which in turn suggests that these geometrical factors may contribute to the selection of perceptual reference-frames. However, whether and how these attributes guide the selection of reference-frames is still poorly understood. The goal of this study was to examine systematically the roles of elongation and symmetry, as well as their combination, in the selection of reference axis and how these axes are developed for unfamiliar objects. We designed our experiments to eliminate two potential confounding factors: (i) extraneous environmental cues, such as edges of the screen, etc. (by using VR) and (ii) pre-learned cues for familiar objects and shapes (by using reinforcement learning of novel shapes). We used algorithmically generated textures with different orientations having specified levels of symmetry and elongation as the stimuli. In each trial, we presented only one stimulus and asked observers to report if the stimulus was in its original form or a flipped (mirror-image) one. Feedback was provided at the end of each trial. Based on previous studies on mental rotation, we hypothesized that the selection of a reference-frame defined by symmetry and/or elongation would be revealed by a linear relationship between reaction-times and the angular-deviation from either the most symmetrical or the most elongated orientation. Our results are consistent with this hypothesis. We found that subjects performed mental rotation to transform images to their reference axes and used the most symmetrical or elongated orientation as the reference axis when only one factor was presented, and they used a "winner-take-all" strategy when both factors were presented, with elongation being more dominant than symmetry. We discuss theoretical implications of these findings, in particular in the context of "canonical sensorimotor theory."

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA