RESUMEN
The placenta is an intriguing organ that allows us to survive intrauterine life. This essential organ connects both mother and fetus and plays a crucial role in maternal and fetal well-being. This chapter presents an overview of the morphological and functional aspects of human placental development. First, we describe early human placental development and the characterization of the cell types found in the human placenta. Second, the human placenta from the second trimester to the term of gestation is reviewed, focusing on the morphology and specific pathologies that affect the placenta. Finally, we focus on the placenta's primary functions, such as oxygen and nutrient transport, and their importance for placental development.
Asunto(s)
Feto , Placenta , Embarazo , Femenino , Humanos , Placenta/metabolismo , Placentación , Desarrollo FetalRESUMEN
Transport processes across membranes play central roles in any biological system. They are essential for homeostasis, cell nutrition, and signaling. Fluxes across membranes are governed by fundamental thermodynamic rules and are influenced by electrical potentials and concentration gradients. Transmembrane transport processes have been largely studied on single membranes. However, several important cellular or subcellular structures consist of two closely spaced membranes that form a membrane sandwich. Such a dual membrane structure results in remarkable properties for the transport processes that are not present in isolated membranes. At the core of membrane sandwich properties, a small intermembrane volume is responsible for efficient coupling between the transport systems at the two otherwise independent membranes. Here, we present the physicochemical principles of transport coupling at two adjacent membranes and illustrate this concept with three examples. In the supplementary material, we provide animated PowerPoint presentations that visualize the relationships. They could be used for teaching purposes, as has already been completed successfully at the University of Talca.
RESUMEN
Plants have to absorb essential nutrients from the soil and do this via specialized membrane proteins. Groundbreaking studies about half a century ago led to the identification of different nutrient uptake systems in plant roots. Historically, they have been characterized as "high-affinity" uptake systems acting at low nutrient concentrations or as "low-affinity" uptake systems acting at higher concentrations. Later this "high- and low-affinity" concept was extended by "dual-affinity" transporters. Here, in this study it is now demonstrated that the affinity concept based on enzyme kinetics does not have proper scientific grounds. Different computational cell biology scenarios show that affinity analyses, as they are often performed in wet-lab experiments, are not suited for reliably characterizing transporter proteins. The new insights provided here clearly indicate that the classification of transporters on the basis of enzyme kinetics is largely misleading, thermodynamically in no way justified and obsolete.
RESUMEN
The objective of this research was to evaluate the influence of salinity on the absorption and utilization of nutrients by cassava. For the study, cassava was submitted to four saline concentrations: 0, 20, 40, and 60mM NaCl. Results showed that the absorption of all nutrients, except nitrogen (N), was reduced by salinity, with highest reduction for potassium (K). However, all nutrients were maintained at concentrations which did not indicate mineral deficiency problem. The abnormal concentration of calcium in the tuberous roots may have been one of the factors that contributed to the lower growth of this organ and of the plant as a whole. Transports of nitrogen, potassium, phosphorus and sulfur from root to the aerial part was higher under salinity treatment. Efficiency in the use of all the nutrients, mainly N, was reduced due to salinity. Given that: (i) the absorption of K was the most impaired, (ii) there was abnormal accumulation of Ca in tuberous roots, and (iii) the efficiency in the use of N was the most affected, it is suggested to prioritize studies on these three issues, as a way to better understand the aspects related to the tolerance/sensitivity of cassava plants to salinity.(AU)
O objetivo deste trabalho foi o de avaliar a influência da salinidade sobre a absorção e utilização de nutrientes pela mandioca. Para o estudo, as plantas foram submetidas a quatro concentrações salinas: 0, 20, 40 e 60mM de NaCl. Os resultados mostraram que a absorção de todos os nutrientes, exceto o nitrogênio (N), foi reduzida pela salinidade, com maior redução para o potássio (K). No entanto, todos os nutrientes foram mantidos em concentrações que não indicaram problema de deficiência mineral. A concentração anormal de cálcio nas raízes tuberosas pode ter sido um dos fatores que contribuíram para o menor crescimento desse órgão e da planta como um todo. Os transportes de nitrogênio, potássio, fósforo e enxofre da raiz para a parte aérea foram maiores sob tratamento com salinidade. A eficiência no uso de todos os nutrientes, principalmente N, foi reduzida devido à salinidade. Considerando que: (i) a absorção de K foi a mais prejudicada, (ii) houve acúmulo anormal de Ca nas raízes tuberosas e (iii) a eficiência no uso de N foi a mais afetada, sugere-se priorizar estudos sobre estas três questões, como forma de melhor entender os aspectos relacionados à tolerância/sensibilidade das plantas de mandioca à salinidade.(AU)
RESUMEN
ABSTRACT: The objective of this research was to evaluate the influence of salinity on the absorption and utilization of nutrients by cassava. For the study, cassava was submitted to four saline concentrations: 0, 20, 40, and 60mM NaCl. Results showed that the absorption of all nutrients, except nitrogen (N), was reduced by salinity, with highest reduction for potassium (K). However, all nutrients were maintained at concentrations which did not indicate mineral deficiency problem. The abnormal concentration of calcium in the tuberous roots may have been one of the factors that contributed to the lower growth of this organ and of the plant as a whole. Transports of nitrogen, potassium, phosphorus and sulfur from root to the aerial part was higher under salinity treatment. Efficiency in the use of all the nutrients, mainly N, was reduced due to salinity. Given that: (i) the absorption of K was the most impaired, (ii) there was abnormal accumulation of Ca in tuberous roots, and (iii) the efficiency in the use of N was the most affected, it is suggested to prioritize studies on these three issues, as a way to better understand the aspects related to the tolerance/sensitivity of cassava plants to salinity.
RESUMO: O objetivo deste trabalho foi o de avaliar a influência da salinidade sobre a absorção e utilização de nutrientes pela mandioca. Para o estudo, as plantas foram submetidas a quatro concentrações salinas: 0, 20, 40 e 60mM de NaCl. Os resultados mostraram que a absorção de todos os nutrientes, exceto o nitrogênio (N), foi reduzida pela salinidade, com maior redução para o potássio (K). No entanto, todos os nutrientes foram mantidos em concentrações que não indicaram problema de deficiência mineral. A concentração anormal de cálcio nas raízes tuberosas pode ter sido um dos fatores que contribuíram para o menor crescimento desse órgão e da planta como um todo. Os transportes de nitrogênio, potássio, fósforo e enxofre da raiz para a parte aérea foram maiores sob tratamento com salinidade. A eficiência no uso de todos os nutrientes, principalmente N, foi reduzida devido à salinidade. Considerando que: (i) a absorção de K foi a mais prejudicada, (ii) houve acúmulo anormal de Ca nas raízes tuberosas e (iii) a eficiência no uso de N foi a mais afetada, sugere-se priorizar estudos sobre estas três questões, como forma de melhor entender os aspectos relacionados à tolerância/sensibilidade das plantas de mandioca à salinidade.
RESUMEN
Plants have developed different signaling systems allowing for the integration of environmental cues to coordinate molecular processes associated to both early development and the physiology of the adult plant. Research on systemic signaling in plants has traditionally focused on the role of phytohormones as long-distance signaling molecules, and more recently the importance of peptides and miRNAs in building up this communication process has also been described. However, it is well-known that plants have the ability to generate different types of long-range electrical signals in response to different stimuli such as light, temperature variations, wounding, salt stress, or gravitropic stimulation. Presently, it is unclear whether short or long-distance electrical communication in plants is linked to nutrient uptake. This review deals with aspects of sensory input in plant roots and the propagation of discrete signals to the plant body. We discuss the physiological role of electrical signaling in nutrient uptake and how nutrient variations may become an electrical signal propagating along the plant.