Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 261: 122000, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38944003

RESUMEN

Anaerobic digestion (AD) is a key technology for converting organic matters to methane-rich biogas. However, nutrient imbalance can destabilize the whole digestion. To realize stable operation of AD and improve its efficiency, this work considers a new strategy to control the intermediate concentrations of poor AD under nutrient stress. For this purpose, long-term digestion under different nutrient conditions was investigated. Results showed that the feedstock with a low C/N ratio (= 6) caused VFA accumulation (2072 ± 632 mg/L), leading to the inhibition of methane production. Employing a substrate with a higher C/N ratio (= 11) and/or adding NH4HCO3 (200 mg NH4+-N/Ladd) could alleviate the VFA inhibition, but excessive dosage of NH4HCO3 would induce ammonia inhibition. Through the established digestion balance between free ammonia nitrogen (FAN) between 0 and 25 mg/L, volatile fatty acid (VFA) 510-2100 mg/L, and alkalinity (ALK) 3300-7800 mg/L, an efficient methane yield of 150-250 mL/g VS was achieved and stable operation of AD under nutrient stress (low C/N ratio) was realized. Metabolic reconstruction between Euryarchaeota sp. MAG162, Methanosarcina mazei MAG53 and Mesotoga infera MAG119 highlighted that microbial niche balance was developed as a result of digestion balance, which is beneficial for stable operation of AD. These findings improved our understanding of the interaction mechanism between intermediates and microbial niches for stability control in AD.


Asunto(s)
Ácidos Grasos Volátiles , Metano , Anaerobiosis , Metano/metabolismo , Ácidos Grasos Volátiles/metabolismo , Reactores Biológicos , Amoníaco/metabolismo , Biocombustibles , Nitrógeno/metabolismo
2.
Bioresour Technol ; 402: 130836, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744398

RESUMEN

There have been extensive applications of waste activated sludge (WAS) in anaerobic co-digestion (AcoD). Nonetheless, mechanisms through which AcoD systems maintain stability, particularly under nutrient-stressed conditions, are under-appreciated. In this study, the role of WAS in a nutrient-stressed WAS-food waste AcoD system was re-evaluated. Our findings demonstrated that WAS-based co-digestion increased methane production (by 20-60%) as WAS bolsters such systems' resilience via establishing a core niche-based microbial balance. The carbon utilization investigation suggested a microbial niche balance is attainable if two conditions are satisfied: 1) hydrolysis efficiency is greater than 50%; and 2) both the acidogenesis-to-hydrolysis and acetogenesis-to-hydrolysis efficiencies surpass 0.5. Metagenomic assembly genome (MAG) analysis indicated that the versatile metabolic characteristics strengthened the microbial niche balance, rendering the system resilient and efficient through a syntrophic mode, contributing to both acidogenesis and acetogenesis. The findings of this study provide new insights into the ecological effects of WAS on AcoD.


Asunto(s)
Metano , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Anaerobiosis , Metano/metabolismo , Reactores Biológicos , Hidrólisis , Nutrientes/metabolismo , Carbono/metabolismo
3.
Plants (Basel) ; 12(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37895984

RESUMEN

Soil salinization negatively impacts plant development and induces land degradation, thus affecting biodiversity, water quality, crop production, farmers' well-being, and the economic situation in the affected region. Plant germination, growth, and productivity are vital processes impaired by salinity stress; thus, it is considered a serious threat to agriculture. The extent to which a plant is affected by salinity depends mainly on the species, but other factors, including soil attributes, water, and climatic conditions, also affect a plant's ability to tolerate salinity stress. Unfortunately, this phenomenon is expected to be exacerbated further by climate change. Consequently, studies on salt stress tolerance in plants represent an important theme for the present Special Issue of Plants. The present Special Issue contains 14 original contributions that have documented novel discoveries regarding induced or natural variations in plant genotypes to cope with salt stress, including molecular biology, biochemistry, physiology, genetics, cell biology, modern omics, and bioinformatic approaches. This Special Issue also includes the impact of biostimulants on the biochemical, physiological, and molecular mechanisms of plants to deal with salt stress and on the effects of salinity on plant nutrient status. We expect that readers and academia will benefit from all the articles included in this Special Issue.

4.
Plants (Basel) ; 12(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36840061

RESUMEN

Growers rely on nutrient sufficiency ranges (NSRs) after plant tissue analysis to inform timely nutrient management decisions. The NSRs are typically established from survey studies across multiple locations, which could be confounded by several abiotic and biotic factors. We conducted field studies in 2020, 2021, and 2022 to validate the lower thresholds of the NSRs for corn (Zea mays) at the early growth stage as reported in the Southern Cooperative Series Bulletin #394. We induced various corn nutritional levels by making different nutrient application rates. If the NSRs are valid, samples within the same replication that satisfy the NSRs of all nutrients should have similar biomass accumulation. The results showed that the NSRs were not valid under the conditions tested. In total, 47.6% of the samples satisfied all the lower thresholds of the NSRs, and 25.4% of those samples had relative biomass <50%, with relative biomass even as low as 24.2% observed. Moreover, 9.6% of the total samples had P and Cu levels that failed to meet the lower threshold but still had relative biomass ≥75%. The findings highlight the sensitivity of corn to nutrient imbalance and the need to optimize nutrient diagnostic methods at the early growth stage.

5.
Chemosphere ; 313: 137555, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36526137

RESUMEN

Anthropogenic input of nutrient has profoundly influenced water quality and aquatic organisms, however, large and unbalanced nitrogen (N) and phosphorus (P) inputs (decoupling) can lead to a range of ecological health problems such as eutrophication. Whether and how the decoupling varies along the aquatic food chain remains poorly addressed. Here we chose an urban river ecosystem in the cosmopolis region of Beijing, with reclaimed water as the entire replenishment water source over 20 years, to demonstrate the decoupling pattern of N vs P across trophic levels. Results showed that organism C, N and P concentration increased, but N:P ratio decreased upward along the food chains, suggesting that this decoupling of N and P increased as trophic level ascends. Compared with natural freshwater ecosystem, the decoupling of N and P was aggravated in the reclaimed water river. Moreover, the homeostasis of N and P were higher at higher relative to lower trophic levels, and higher in macro-food chain relative to planktonic food chain. This study, for the first time, revealed the increasing decoupling of N vs P upward along the major food chains in an urban aquatic ecosystem, and could improve the understanding of nutrient cycling at the food chain level under human disturbance, and provide useful information for ecological restoration and eutrophication control of urban wetlands replenished with reclaimed water.


Asunto(s)
Ecosistema , Cadena Alimentaria , Humanos , Ríos , Agua Dulce , Fósforo , Nitrógeno
6.
Front Microbiol ; 13: 946537, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212857

RESUMEN

Chemical oxygen demand to nitrogen (COD/N) and nitrogen to phosphorus (N/P) ratios have distinct effects on bacterial community structure and interactions. However, how organic to nutrient imbalances affect the structure of freshwater bacterial assemblages in restored wetlands remains poorly understood. Here, the composition and dominant taxa of bacterial assemblages in four wetlands [low COD/N and high N/P (LH), low COD/N and low N/P (LL), high COD/N and high N/P (HH), and high COD/N and low N/P (HL)] were investigated. A total of 7,709 operational taxonomic units were identified by high throughput sequencing, and Actinobacteria, Proteobacteria, and Cyanobacteria were the most abundant phyla in the restored wetlands. High COD/N significantly increased bacterial diversity and was negatively correlated with N/P (R 2 = 0.128; p = 0.039), and the observed richness (Sobs) indices ranged from 860.77 to 1314.66. The corresponding Chao1 and phylogenetic diversity (PD) values ranged from 1533.42 to 2524.56 and 127.95 to 184.63. Bacterial beta diversity was negatively related to COD/N (R 2 = 0.258; p < 0.001). The distribution of bacterial assemblages was mostly driven by variations in ammonia nitrogen (NH4 +-N, p < 0.01) and electrical conductivity (EC, p < 0.01), which collectively explained more than 80% of the variation in bacterial assemblages. However, the dominant taxa Proteobacteria, Firmicutes, Cyanobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, Chloroflexi, and Deinococcus-Thermus were obviously affected by variation in COD/N and N/P (p < 0.05). The highest node and edge numbers and average degree were observed in the LH group. The co-occurrence networkindicated that LH promoted bacterial network compactness and bacterial interaction consolidation. The relationships between organic to nutrient imbalances and bacterial assemblages may provide a theoretical basis for the empirical management of wetland ecosystems.

7.
Front Microbiol ; 13: 805306, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35516439

RESUMEN

Mixotrophic protists are widely observed in the aquatic ecosystems, while how they respond to inorganic nutrient imbalance and ocean warming remains understudied. We conducted a series of experiments on a mixotrophic dinoflagellate Lepidodinium sp. isolated from subtropical coastal waters to investigate the combined effect of temperature and medium nitrate to phosphate ratio (N:P ratio) on the ingestion activities of mixotrophic protists. We found Lepidodinium sp. displayed selective feeding behaviour with a higher ingestion rate on high-N prey (N-rich Rhodomonas salina) when the ambient inorganic N:P ratio was equal to or below the Redfield ratio. The Chesson selectivity index α increased with increasing temperature, suggesting that warming exacerbated the selective feeding of Lepidodinium sp. Under inorganic nitrogen sufficient conditions (N:P ratio = 64), no selective feeding was observed at 25 and 28°C, while it occurs at 31°C, which also indicates that warming alters the feeding behaviour of Lepidodinium sp. In addition, our results revealed that the total ingestion rate of Lepidodinium sp. under the condition with normal inorganic nutrients (Redfield ratio) was significantly lower than that under nutrient-imbalanced conditions, which indicates that Lepidodinium sp. developed compensatory feeding to balance their cellular stoichiometry and satisfy their growth. Our study is the first attempt on revealing the selective feeding behaviours of mixotrophic protists on prey under different inorganic nutrient environments and rising temperatures, which will contribute to our understanding of the response of marine plankton food web to projected climate changes.

9.
Mar Environ Res ; 169: 105398, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34171592

RESUMEN

Coastal eutrophication is one of the pivotal factors driving occurrence of harmful algal blooms (HABs), whose underlying mechanism remained unclear. To better understand the nutrient regime triggering HABs and their formation process, the phytoplankton composition and its response to varying nitrogen (N) and phosphorus (P), physio-chemical parameters in water and sediment in Johor Strait in March 2019 were analyzed. Surface and sub-surface HABs were observed with the main causative species of Skeletonema, Chaetoceros and Karlodinium. The ecophysiological responses of Skeletonema to the low ambient N/P ratio such as secreting alkaline phosphatase, regulating cell morphology (volume; surface area/volume ratio) might play an important role in dominating the community. Anaerobic sediment iron-bound P release and simultaneous N removal by denitrification and anammox, shaped the stoichiometry of N and P in water column. The decrease of N/P ratio might shift the phytoplankton community into the dominance of HABs causative diatoms and dinoflagellates.


Asunto(s)
Diatomeas , Dinoflagelados , Anaerobiosis , Eutrofización , Malasia , Nitrógeno/análisis , Nutrientes , Fósforo/análisis , Fitoplancton
10.
Artículo en Inglés | MEDLINE | ID: mdl-33638781

RESUMEN

The construction of highways in the subalpine mountains generates many cut slopes. Currently, the restoration of cut slope mainly focuses on the aboveground landscapes and slope stability. Yet, it remains elusive about the belowground ecosystem functions at the early stage of restoration. In this study, we evaluated the belowground ecosystem functions of cut slopes that had been restored approximately 3 years using soil enzymatic activities, microbial biomass, and stoichiometry as the proxies. The results indicated that the phenol oxidase activity was higher in cut slopes, while the activities of ß-1,4-glucosidase, ß-1,4-N-acetylglucosaminidase, leucine aminopeptidase, and acid phosphatase were lower in cut slope soils compared with natural soils. Soil nitrogen availabilities (total and/or ammonium nitrogen) showed high negative correlations with the phenol oxidase activity and positive correlations with the activities of almost all other enzymes. These results suggested that soil nitrogen was the key factor in driving the shifts of enzymatic activities across two types of soils. Moreover, we found the imbalance of soil nutrients in cut slope soils, especially the carbon vs. nitrogen and the nitrogen vs. phosphorus. By applying the vector analysis, we found that the vector A values were more than 45° in all samples, suggesting that microbial phosphorus limitation occurred in both cut slope and natural soils. These findings suggested that maintaining the balance of soil nutrient supplies is important to the recovery of the below-ground ecosystem functions at the early restoration stage of cut slopes. This study provided new insights into designing the ecological restoration strategies for cut slopes by considering the belowground ecosystem functions.

11.
J Sci Food Agric ; 101(7): 3056-3064, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33215712

RESUMEN

BACKGROUND: Zinc (Zn) deficiency in crops is commonly aggravated by high levels of phosphorus (P) in soil. In this work, the initial performance of pot-growing maize in response to the available P and Zn in soils with low available Zn and to the application of P and Zn fertilizers was investigated. RESULTS: The soils (six non-calcareous and 14 calcareous) ranged widely in available P (Olsen P: 5.5-37.9 mg kg-1 ), were poor in available Zn [diethylenetriaminepentaacetic acid-extractable Zn (ZnDTPA ): 0.20-0.84 mg kg-1 ] and had an Olsen P/ZnDTPA ratio of 13 to 111 mg mg-1 . Soil P application generally increased aerial dry matter (ADM) yield; Zn increased ADM yield mostly when applied in combination with P; and the sole application of Zn increased yield only in a soil with a high (28 mg kg-1 ) Olsen P and a low (0.36 mg kg-1 ) ZnDTPA . The increase in ADM yield resulting from optimal application of P and/or Zn to the soil was modest in soils where the Olsen P/ZnDTPA ratio was 30-60 and Olsen P was >14 mg kg-1 . Zinc uptake by the control plants was correlated with the ZnDTPA of the soil. For a certain ZnDTPA value, the level of plant available Zn was higher in non-calcareous than in calcareous soils. CONCLUSION: Soil application of fertilizer P and Zn, in soils with low levels of available Zn, should not only aim at increasing the available P and Zn levels but also balancing them at the appropriate Olsen P/ZnDTPA ratio, which was found to lie in the 30-60 range in the present study. © 2020 Society of Chemical Industry.


Asunto(s)
Producción de Cultivos/métodos , Fósforo/análisis , Zea mays/crecimiento & desarrollo , Zinc/análisis , Producción de Cultivos/instrumentación , Fertilizantes/análisis , Región Mediterránea , Ácido Pentético/análisis , Ácido Pentético/metabolismo , Fósforo/metabolismo , Suelo/química , Zea mays/metabolismo , Zinc/metabolismo
12.
Glob Chang Biol ; 26(8): 4379-4400, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32348631

RESUMEN

Anthropogenic nitrogen (N) deposition and resulting differences in ecosystem N and phosphorus (P) ratios are expected to impact photosynthetic capacity, that is, maximum gross primary productivity (GPPmax ). However, the interplay between N and P availability with other critical resources on seasonal dynamics of ecosystem productivity remains largely unknown. In a Mediterranean tree-grass ecosystem, we established three landscape-level (24 ha) nutrient addition treatments: N addition (NT), N and P addition (NPT), and a control site (CT). We analyzed the response of ecosystem to altered nutrient stoichiometry using eddy covariance fluxes measurements, satellite observations, and digital repeat photography. A set of metrics, including phenological transition dates (PTDs; timing of green-up and dry-down), slopes during green-up and dry-down period, and seasonal amplitude, were extracted from time series of GPPmax and used to represent the seasonality of vegetation activity. The seasonal amplitude of GPPmax was higher for NT and NPT than CT, which was attributed to changes in structure and physiology induced by fertilization. PTDs were mainly driven by rainfall and exhibited no significant differences among treatments during the green-up period. Yet, both fertilized sites senesced earlier during the dry-down period (17-19 days), which was more pronounced in the NT due to larger evapotranspiration and water usage. Fertilization also resulted in a faster increase in GPPmax during the green-up period and a sharper decline in GPPmax during the dry-down period, with less prominent decline response in NPT. Overall, we demonstrated seasonality of vegetation activity was altered after fertilization and the importance of nutrient-water interaction in such water-limited ecosystems. With the projected warming-drying trend, the positive effects of N fertilization induced by N deposition on GPPmax may be counteracted by an earlier and faster dry-down in particular in areas where the N:P ratio increases, with potential impact on the carbon cycle of water-limited ecosystems.


Asunto(s)
Ecosistema , Agua , Nutrientes , Plantas , Estaciones del Año
13.
Front Cell Neurosci ; 14: 612705, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33536875

RESUMEN

Providing the appropriate quantity and quality of food needed for both the mother's well-being and the healthy development of the offspring is crucial during pregnancy. However, the macro- and micronutrient intake also impacts the body's regulatory supersystems of the mother, such as the immune, endocrine, and nervous systems, which ultimately influence the overall development of the offspring. Of particular importance is the association between unhealthy maternal diet and neurodevelopmental disorders in the offspring. Epidemiological studies have linked neurodevelopmental disorders like autism spectrum disorders, attention-deficit-hyperactivity disorder, and schizophrenia, to maternal immune activation (MIA) during gestation. While the deleterious consequences of diet-induced MIA on offspring neurodevelopment are increasingly revealed, neuroinflammation is emerging as a key underlying mechanism. In this review, we compile the evidence available on how the mother and offspring are both impacted by maternal dietary imbalance. We specifically explore the various inflammatory and anti-inflammatory effects of dietary components and discuss how changes in inflammatory status can prime the offspring brain development toward neurodevelopmental disorders. Lastly, we discuss research evidence on the mechanisms that sustain the relationship between maternal dietary imbalance and offspring brain development, involving altered neuroinflammatory status in the offspring, as well as genetic to cellular programming notably of microglia, and the evidence that the gut microbiome may act as a key mediator.

14.
Water Res ; 165: 114978, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31434013

RESUMEN

Membrane biofouling remains a significant challenge in seawater reverse osmosis desalination for drinking water production. This study investigated nutrient imbalance as the cause of biofouling in lab-scale experiments and carried out a year-long field-testing at a seawater desalination pilot plant. Lab experiments showed that growth medium with excess of organic carbon (C) but with low nitrogen (N) and phosphorus (P) accelerated the formation of bacterial biofilm. Balancing C to N and P ratios by adding N and P to growth medium increased the proliferation of free-living cells but reduced attached form of bacteria as biofilm. The cell excretion of excess C in the form of extracellular polysaccharides (EPS) was considered as a strategy for nutrient storage for future use. Cell enzyme activity assays indicated some of the bacteria had enhanced enzyme activities to degrade polysaccharides in the absence of organic C in growth medium, possibly using EPS in the biofilm. A year-long field study indicated that accelerated biofouling of seawater reverse osmosis (SWRO) membranes was associated with the elevated content of total organic carbon (TOC) in the intake seawater. Adding N and P to the intake seawater to balance the increase of TOC resulted in reduction of membrane biofouling. Microbial community analysis of the biofouling layer using 16S rRNA gene sequencing indicated biofouling communities varied with seasonal changes. Dosing of N and P did not induce dramatic changes in the fouling microbial community growing on the membrane surface. The outcome of this work implies that membrane biofouling associated with the elevated concentration of TOC in intake seawater is caused by imbalance of C:N:P in the source seawater which occurs often during algal blooms. Addition of N and P to rebalance the nutrients can prevent accelerated SWRO membrane biofouling.


Asunto(s)
Incrustaciones Biológicas , Purificación del Agua , Biopelículas , Carbono , Membranas Artificiales , Nitrógeno , Ósmosis , Fósforo , ARN Ribosómico 16S , Agua de Mar
15.
Sci Total Environ ; 610-611: 555-562, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28822339

RESUMEN

Anthropogenic increase of nitrogen (N) deposition has threatened forest ecosystem health at both regional and global scales. In N-limited ecosystems, atmospheric N input is regarded as an important nutrient source for plant growth. However, it remains an open question on how elevated N deposition affects plant growth in N-rich forest ecosystems. To address this question, we used a simulated N deposition experiment in an N-rich mature tropical forest of southern China, with N addition levels as 0kgNha-1yr-1 (Control), 50kgNha-1yr-1 (Low-N), 100kgNha-1yr-1 (Middle-N) and 150kgNha-1yr-1 (High-N), respectively. We measured foliar nutrient element status (e.g., N, P, K, Ca and Mg), N metabolism and photosynthesis capacity of three dominant understory plant species (Cryptocarya concinna and Cryptocarya chinensis as medium-light species; and Randia canthioides as shade tolerant species) in this forest. Results showed that two years of N addition greatly increased foliar N content, but decreased the content of nutrient cations (e.g., K, Ca and Mg). Nitrogen addition also increased N accumulation as organic forms as soluble protein and/or free amino acid (FAA), but not as chlorophyll in all three species. We further found that the photosynthesis capacity (Pmax) of C. concinna and C. chinensis decreased significantly with elevated N addition, with no effects on R. canthioides. However, photosynthetic nitrogen use efficiency (PNUE) significantly declined with N addition for all three species, with significantly negative relationships between PNUE/Pmax and foliar N content. These findings suggest that excess N inputs can accelerate nutrient imbalance, and inhibit photosynthetic capacity of understory plant species, indicating continuous high N deposition can threat understory plant growth in N-rich tropical forests in the future. Meanwhile, PNUE can be used as a sensitive indicator to assess ecosystem N status under chronic N deposition.

16.
Plant Cell Environ ; 40(4): 509-526, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26765289

RESUMEN

The role of NADPH oxidases under cadmium (Cd) toxicity was studied using Arabidopsis thaliana mutants AtrbohC, AtrbohD and AtrbohF, which were grown under hydroponic conditions with 25 and 100 µM Cd for 1 and 5 days. Cadmium reduced the growth of leaves in WT, AtrbohC and D, but not in AtrbohF. A time-dependent increase in H2 O2 and lipid peroxidation was observed in all genotypes, with AtrbohC showing the smallest increase. An opposite behaviour was observed with NO accumulation. Cadmium increased catalase activity in WT plants and decreased it in Atrboh mutants, while glutathione reductase and glycolate oxidase activities increased in Atrboh mutants, and superoxide dismutases were down-regulated in AtrbohC. The GSH/GSSG and ASA/DHA couples were also affected by the treatment, principally in AtrbohC and AtrbohF, respectively. Cadmium translocation to the leaves was severely reduced in Atrboh mutants after 1 day of treatment and even after 5 days in AtrbohF. Similar results were observed for S, P, Ca, Zn and Fe accumulation, while an opposite trend was observed for K accumulation, except in AtrbohF. Thus, under Cd stress, RBOHs differentially regulate ROS metabolism, redox homeostasis and nutrient balance and could be of potential interest in biotechnology for the phytoremediation of polluted soils.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Cadmio/toxicidad , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Ácido Ascórbico/metabolismo , Catalasa/metabolismo , Respiración de la Célula/efectos de los fármacos , Respiración de la Célula/efectos de la radiación , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Luz , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/efectos de la radiación , Minerales/metabolismo , Mutación/genética , Óxido Nítrico/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Análisis de Componente Principal , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/efectos de la radiación , Superóxido Dismutasa/metabolismo
17.
Crit Rev Microbiol ; 42(3): 428-38, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-25383649

RESUMEN

Up till now various plant-fungal interactions have been extensively studied in the form of mycorrhizal, parasitic or endophytic lifestyles. Many of those interactions are beneficial to the host plants and a few are detrimental. Several investigations have pointed towards the interconversion of one fungal lifestyle into another while interact the plant system meaning endophyte may become parasite or vice versa. In such case, it is necessary to realize whether these different lifestyles are interconnected at some points either by physiological, biochemical or molecular routes and to identify the factors that trigger the change in fungal lifestyle, which is entirely different than earlier one and affects the host plant significantly. This review highlights the possible mechanisms of switching among the lifestyles of fungi based on recent findings and discusses the factors affecting plant fungal interactions. It also underlines the need for studying this important facet of plant-fungal interactions in depth which may in future help to fetch more advantages and to avoid the severe consequences in agriculture and other related fields.


Asunto(s)
Hongos/fisiología , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Endófitos/fisiología , Interacciones Huésped-Patógeno , Fenómenos Fisiológicos de las Plantas , Simbiosis
18.
AoB Plants ; 72015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26333825

RESUMEN

Fertilization of agricultural plants with ammonium [Formula: see text] is often desirable because it is less susceptible to leaching than nitrate [Formula: see text] reducing environmental pollution, risk to human health and economic loss. However, a number of important agricultural species exhibit a reduction in growth when fertilized with [Formula: see text] and increasing the tolerance to [Formula: see text] may be of importance for the establishment of sustainable agricultural systems. The present study explored the feasibility of using calcium (Ca) to increase the tolerance of bell pepper (Capsicum annuum) to [Formula: see text] fertilization. Although [Formula: see text] at proportions ≥25 % of total nitrogen (N) decreased leaf dry mass (DM), supplementary Ca ameliorated this decrease. Increasing [Formula: see text] resulted in decreased root hydraulic conductance (Lo) and root water content (RWC), suggesting that water uptake by roots was impaired. The [Formula: see text]-induced reductions in Lo and RWC were mitigated by supplementary Ca. Ammonium induced increased damage to the cell membranes through lipid peroxidation, causing increased electrolyte leakage; Ca did not reduce lipid peroxidation and resulted in increased electrolyte leakage, suggesting that the beneficial effects of Ca on the tolerance to [Formula: see text] may be more of a reflection on its effect on the water status of the plant. Bell pepper plants that received [Formula: see text] had a low concentration of [Formula: see text] in the roots but a high concentration in the leaves, probably due to the high nitrate reductase activity observed. Ammonium nutrition depressed the uptake of potassium, Ca and magnesium, while increasing that of phosphorus. The results obtained in the present study indicate that [Formula: see text] caused growth reduction, nutrient imbalance, membrane integrity impairment, increased activity of antioxidant enzymes and affected water relations. Supplementary Ca partially restored growth of leaves by improving root Lo and water relations, and our results suggest that it may be used as a tool to increase the tolerance to [Formula: see text] fertilization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA