Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8232, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589393

RESUMEN

Owing to enhanced thermal characteristics of nanomaterials, multidisciplinary applications of such particles have been utilized in the industrial and engineering processes, chemical systems, solar energy, extrusion processes, nuclear systems etc. The aim of current work is to suggests the thermal performances of thixotropic nanofluid with interaction of magnetic force. The suspension of microorganisms in thixotropic nanofluid is assumed. The investigation is further supported with the triple diffusion flow. The motivations for considering the triple diffusion phenomenon are associated to attaining more thermal applications. The flow pattern is subject to novel stagnation point flow. The convective thermal constraints are incorporated. The modeled problem is numerically evaluated by using shooting technique. Different consequences of physical parameters involving the problem are graphically attributed. The insight analysis is presented for proposed problem with different engineering applications. It is claimed that induced magnetic field enhanced due to magnetic parameter while declining results are observed for thixotropic parameter. The heat transfer enhances due to variation of Dufour number. Furthermore, low profile of nanoparticles concentration has been observed for thixotropic parameter and nano-Lewis number.

2.
Sci Rep ; 14(1): 8187, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589434

RESUMEN

Owing to advanced thermal features and stable properties, scientists have presented many novel applications of nanomaterials in the energy sectors, heat control devices, cooling phenomenon and many biomedical applications. The suspension between nanomaterials with microorganisms is important in biotechnology and food sciences. With such motivations, the aim of current research is to examine the bioconvective thermal phenomenon due to Reiner-Philippoff nanofluid under the consideration of multiple slip effects. The assessment of heat transfer is further predicted with temperature dependent thermal conductivity. The radiative phenomenon and chemical reaction is also incorporated. The stretched surface with permeability of porous space is assumed to be source of flow. With defined flow constraints, the mathematical model is developed. For solution methodology, the numerical simulations are worked out via shooting technique. The physical aspects of parameters are discussed. It is claimed that suggested results claim applications in the petroleum sciences, thermal systems, heat transfer devices etc. It has been claimed that the velocity profile increases due to Bingham parameter and Philippoff constant. Lower heat and mass transfer impact is observed due to Philippoff parameter.

3.
Optim Eng ; 23(2): 749-768, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35656362

RESUMEN

We consider a setting in which it is desired to find an optimal complex vector x ∈ C N that satisfies A (x) ≈ b in a least-squares sense, where b ∈ C M is a data vector (possibly noise-corrupted), and A (·) : C N → C M is a measurement operator. If A (·) were linear, this reduces to the classical linear least-squares problem, which has a well-known analytic solution as well as powerful iterative solution algorithms. However, instead of linear least-squares, this work considers the more complicated scenario where A (·) is nonlinear, but can be represented as the summation and/or composition of some operators that are linear and some operators that are antilinear. Some common nonlinear operations that have this structure include complex conjugation or taking the real-part or imaginary-part of a complex vector. Previous literature has shown that this kind of mixed linear/antilinear least-squares problem can be mapped into a linear least-squares problem by considering x as a vector in R 2N instead of C N . While this approach is valid, the replacement of the original complex-valued optimization problem with a real-valued optimization problem can be complicated to implement, and can also be associated with increased computational complexity. In this work, we describe theory and computational methods that enable mixed linear/antilinear least-squares problems to be solved iteratively using standard linear least-squares tools, while retaining all of the complex-valued structure of the original inverse problem. An illustration is providedtodemonstratethatthisapproachcansimplifytheimplementationandreduce the computational complexity of iterative solution algorithms.

4.
Micromachines (Basel) ; 13(5)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35630198

RESUMEN

In recent years, compute-in-memory (CIM) has been extensively studied to improve the energy efficiency of computing by reducing data movement. At present, CIM is frequently used in data-intensive computing. Data-intensive computing applications, such as all kinds of neural networks (NNs) in machine learning (ML), are regarded as 'soft' computing tasks. The 'soft' computing tasks are computations that can tolerate low computing precision with little accuracy degradation. However, 'hard' tasks aimed at numerical computations require high-precision computing and are also accompanied by energy efficiency problems. Numerical computations exist in lots of applications, including partial differential equations (PDEs) and large-scale matrix multiplication. Therefore, it is necessary to study CIM for numerical computations. This article reviews the recent developments of CIM for numerical computations. The different kinds of numerical methods solving partial differential equations and the transformation of matrixes are deduced in detail. This paper also discusses the iterative computation of a large-scale matrix, which tremendously affects the efficiency of numerical computations. The working procedure of the ReRAM-based partial differential equation solver is emphatically introduced. Moreover, other PDEs solvers, and other research about CIM for numerical computations, are also summarized. Finally, prospects and the future of CIM for numerical computations with high accuracy are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA