Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38766108

RESUMEN

The INO80 chromatin remodeler is a versatile enzyme capable of several functions, including spacing nucleosomes equal distances apart, precise positioning of nucleosomes based on DNA shape/sequence and exchanging histone dimers. Within INO80, the Arp5 subunit plays a central role in INO80 remodeling, evidenced by its interactions with the histone octamer, nucleosomal and extranucleosomal DNA, and its necessity in linking INO80's ATPase activity to nucleosome movement. Our investigation reveals that the grappler domain of Arp5 interacts with the acidic pocket of nucleosomes through two distinct mechanisms: an arginine anchor or a hydrophobic/acidic patch. These two modes of binding serve distinct functions within INO80 as shown in vivo by mutations in these regions resulting in varying phenotypes and in vitro by diverse effects on nucleosome mobilization. Our findings suggest that the hydrophobic/acidic patch of Arp5 is likely important for dimer exchange by INO80, while the arginine anchor is crucial for mobilizing nucleosomes.

2.
Nano Lett ; 24(17): 5246-5254, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602428

RESUMEN

Each nucleosome contains four types of histone proteins, each with a histone tail. These tails are essential for the epigenetic regulation of gene expression through post-translational modifications (PTMs). However, their influence on nucleosome dynamics at the single-molecule level remains undetermined. Here, we employed high-speed atomic force microscopy to visualize nucleosome dynamics in the absence of the N-terminal tail of each histone or all of the N-terminal tails. Loss of all tails stripped 6.7 base pairs of the nucleosome from the histone core, and the DNA entry-exit angle expanded by 18° from that of wild-type nucleosomes. Tail-less nucleosomes, particularly those without H2B and H3 tails, showed a 10-fold increase in dynamics, such as nucleosome sliding and DNA unwrapping/wrapping, within 0.3 s, emphasizing their role in histone-DNA interactions. Our findings illustrate that N-terminal histone tails stabilize the nucleosome structure, suggesting that histone tail PTMs modulate nucleosome dynamics.


Asunto(s)
ADN , Histonas , Microscopía de Fuerza Atómica , Nucleosomas , Nucleosomas/química , Nucleosomas/ultraestructura , Nucleosomas/metabolismo , Microscopía de Fuerza Atómica/métodos , Histonas/química , ADN/química , Conformación de Ácido Nucleico , Procesamiento Proteico-Postraduccional
3.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958827

RESUMEN

Nucleosomes not only serve as the basic building blocks for eukaryotic chromatin but also regulate many biological processes, such as DNA replication, repair, and recombination. To modulate gene expression in vivo, the histone variant H2A.Z can be dynamically incorporated into the nucleosome. However, the assembly dynamics of H2A.Z-containing nucleosomes remain elusive. Here, we demonstrate that our previous chemical kinetic model for nucleosome assembly can be extended to H2A.Z-containing nucleosome assembly processes. The efficiency of H2A.Z-containing nucleosome assembly, like that of canonical nucleosome assembly, was also positively correlated with the total histone octamer concentration, reaction rate constant, and reaction time. We expanded the kinetic model to represent the competitive dynamics of H2A and H2A.Z in nucleosome assembly, thus providing a novel method through which to assess the competitive ability of histones to assemble nucleosomes. Based on this model, we confirmed that histone H2A has a higher competitive ability to assemble nucleosomes in vitro than histone H2A.Z. Our competitive kinetic model and experimental results also confirmed that in vitro H2A.Z-containing nucleosome assembly is governed by chemical kinetic principles.


Asunto(s)
Histonas , Nucleosomas , Histonas/metabolismo , Cromatina
4.
Polymers (Basel) ; 15(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37050377

RESUMEN

The nucleosome, which organizes the long coil of genomic DNA in a highly condensed, polymeric way, is thought to be the basic unit of chromosomal structure. As the most important protein-DNA complex, its structural and dynamic features have been successively revealed in recent years. However, its regulatory mechanism, which is modulated by multiple factors, still requires systemic discussion. This study summarizes the regulatory factors of the nucleosome's dynamic features from the perspective of histone modification, DNA methylation, and the nucleosome-interacting factors (transcription factors and nucleosome-remodeling proteins and cations) and focuses on the research exploring the molecular mechanism through both computational and experimental approaches. The regulatory factors that affect the dynamic features of nucleosomes are also discussed in detail, such as unwrapping, wrapping, sliding, and stacking. Due to the complexity of the high-order topological structures of nucleosomes and the comprehensive effects of regulatory factors, the research on the functional modulation mechanism of nucleosomes has encountered great challenges. The integration of computational and experimental approaches, the construction of physical modes for nucleosomes, and the application of deep learning techniques will provide promising opportunities for further exploration.

5.
Nano Lett ; 23(5): 1696-1704, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36779562

RESUMEN

Nucleosome dynamics, such as nucleosome sliding and DNA unwrapping, are important for gene regulation in eukaryotic chromatin. H2A.Z, a variant of histone H2A that is highly evolutionarily conserved, participates in gene regulation by forming unstable multipositioned nucleosomes in vivo and in vitro. However, the subsecond dynamics of this unstable nucleosome have not been directly visualized under physiological conditions. Here, we used high-speed atomic force microscopy (HS-AFM) to directly visualize the subsecond dynamics of human H2A.Z.1-nucleosomes. HS-AFM videos show nucleosome sliding along 4 nm of DNA within 0.3 s in any direction. This sliding was also visualized in an H2A.Z.1 mutant, in which the C-terminal half was replaced by the corresponding canonical H2A amino acids, indicating that the interaction between the N-terminal region of H2A.Z.1 and the DNA is responsible for nucleosome sliding. These results may reveal the relationship between nucleosome dynamics and gene regulation by histone H2A.Z.


Asunto(s)
Histonas , Nucleosomas , Humanos , Histonas/química , Microscopía de Fuerza Atómica , Cromatina , ADN/química
6.
Cell Rep ; 40(2): 111076, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35830792

RESUMEN

The genomic positions of nucleosomes are a defining feature of the cell's epigenomic state, but signal-dependent transcription factors (SDTFs), upon activation, bind to specific genomic locations and modify nucleosome positioning. Here we leverage SDTFs as perturbation probes to learn about nucleosome dynamics in living cells. We develop Markov models of nucleosome dynamics and fit them to time course sequencing data of DNA accessibility. We find that (1) the dynamics of DNA unwrapping are significantly slower in cells than reported from cell-free experiments, (2) only models with cooperativity in wrapping and unwrapping fit the available data, (3) SDTF activity produces the highest eviction probability when its binding site is adjacent to but not on the nucleosome dyad, and (4) oscillatory SDTF activity results in high location variability. Our work uncovers the regulatory rules governing SDTF-induced nucleosome dynamics in live cells, which can predict chromatin accessibility alterations during inflammation at single-nucleosome resolution.


Asunto(s)
Epigenoma , Nucleosomas , Ensamble y Desensamble de Cromatina , ADN/metabolismo , Factores de Transcripción/metabolismo
7.
Methods Mol Biol ; 2530: 141-157, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35761047

RESUMEN

Posttranslational modifications (PTMs) of histones have been demonstrated to be the key regulating mechanism of nucleosome dynamics and chromatin structure. Lysine succinylation is a recently discovered PTM that plays critical roles in metabolism, epigenetic signaling, and is correlated with several diseases. One significant challenge in studying the effects of this modification on nucleosome dynamics is to obtain site-specifically modified histones. Here, we report the rapid site-specific incorporation of a succinylation mimic into histones, which facilitates the characterization of its impact on nucleosome dynamics with a Förster resonance energy transfer (FRET) approach.


Asunto(s)
Histonas , Nucleosomas , Transferencia Resonante de Energía de Fluorescencia , Histonas/metabolismo , Lisina/metabolismo , Procesamiento Proteico-Postraduccional
8.
Front Mol Biosci ; 8: 741581, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34708075

RESUMEN

The eukaryotic genome is packaged into chromatin, a polymer of DNA and histone proteins that regulates gene expression and the spatial organization of nuclear content. The repetitive character of chromatin is diversified into rich layers of complexity that encompass DNA sequence, histone variants and post-translational modifications. Subtle molecular changes in these variables can often lead to global chromatin rearrangements that dictate entire gene programs with far reaching implications for development and disease. Decades of structural biology advances have revealed the complex relationship between chromatin structure, dynamics, interactions, and gene expression. Here, we focus on the emerging contributions of magic-angle spinning solid-state nuclear magnetic resonance spectroscopy (MAS NMR), a relative newcomer on the chromatin structural biology stage. Unique among structural biology techniques, MAS NMR is ideally suited to provide atomic level information regarding both the rigid and dynamic components of this complex and heterogenous biological polymer. In this review, we highlight the advantages MAS NMR can offer to chromatin structural biologists, discuss sample preparation strategies for structural analysis, summarize recent MAS NMR studies of chromatin structure and dynamics, and close by discussing how MAS NMR can be combined with state-of-the-art chemical biology tools to reconstitute and dissect complex chromatin environments.

9.
Front Cell Dev Biol ; 9: 762571, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692710

RESUMEN

As the elementary unit of eukaryotic chromatin, nucleosomes in vivo are highly dynamic in many biological processes, such as DNA replication, repair, recombination, or transcription, to allow the necessary factors to gain access to their substrate. The dynamic mechanism of nucleosome assembly and disassembly has not been well described thus far. We proposed a chemical kinetic model of nucleosome assembly and disassembly in vitro. In the model, the efficiency of nucleosome assembly was positively correlated with the total concentration of histone octamer, reaction rate constant and reaction time. All the corollaries of the model were well verified for the Widom 601 sequence and the six artificially synthesized DNA sequences, named CS1-CS6, by using the salt dialysis method in vitro. The reaction rate constant in the model may be used as a new parameter to evaluate the nucleosome reconstitution ability with DNAs. Nucleosome disassembly experiments for the Widom 601 sequence detected by Förster resonance energy transfer (FRET) and fluorescence thermal shift (FTS) assays demonstrated that nucleosome disassembly is the inverse process of assembly and can be described as three distinct stages: opening phase of the (H2A-H2B) dimer/(H3-H4)2 tetramer interface, release phase of the H2A-H2B dimers from (H3-H4)2 tetramer/DNA and removal phase of the (H3-H4)2 tetramer from DNA. Our kinetic model of nucleosome assembly and disassembly allows to confirm that nucleosome assembly and disassembly in vitro are governed by chemical kinetic principles.

10.
Cell Rep ; 35(8): 109183, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34038732

RESUMEN

The multisubunit chromatin remodeler SWR1/SRCAP/p400 replaces the nucleosomal H2A-H2B dimer with the free-form H2A.Z-H2B dimer, but the mechanism governing the unidirectional H2A-to-H2A.Z exchange remains elusive. Here, we perform single-molecule force spectroscopy to dissect the disassembly/reassembly processes of the H2A nucleosome and H2A.Z nucleosome. We find that the N-terminal 1-135 residues of yeast SWR1 complex protein 2 (previously termed Swc2-Z) facilitate the disassembly of nucleosomes containing H2A but not H2A.Z. The Swc2-mediated nucleosome disassembly/reassembly requires the inherently unstable H2A nucleosome, whose instability is conferred by three H2A α2-helical residues, Gly47, Pro49, and Ile63, as they selectively weaken the structural rigidity of the H2A-H2B dimer. It also requires Swc2-ZN (residues 1-37) that directly anchors to the H2A nucleosome and functions in the SWR1-catalyzed H2A.Z replacement in vitro and yeast H2A.Z deposition in vivo. Our findings provide mechanistic insights into how the SWR1 complex discriminates between the H2A nucleosome and H2A.Z nucleosome, establishing a simple paradigm for the governance of unidirectional H2A.Z exchange.


Asunto(s)
Histonas/metabolismo , Nucleosomas/metabolismo , Análisis Espectral/métodos , Proteínas de Drosophila , Chaperonas de Histonas , Humanos
11.
Elife ; 102021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33666171

RESUMEN

Chromatin dynamics are mediated by remodeling enzymes and play crucial roles in gene regulation, as established in a paradigmatic model, the Saccharomyces cerevisiae PHO5 promoter. However, effective nucleosome dynamics, that is, trajectories of promoter nucleosome configurations, remain elusive. Here, we infer such dynamics from the integration of published single-molecule data capturing multi-nucleosome configurations for repressed to fully active PHO5 promoter states with other existing histone turnover and new chromatin accessibility data. We devised and systematically investigated a new class of 'regulated on-off-slide' models simulating global and local nucleosome (dis)assembly and sliding. Only seven of 68,145 models agreed well with all data. All seven models involve sliding and the known central role of the N-2 nucleosome, but regulate promoter state transitions by modulating just one assembly rather than disassembly process. This is consistent with but challenges common interpretations of previous observations at the PHO5 promoter and suggests chromatin opening by binding competition.


Asunto(s)
Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismo , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ensamble y Desensamble de Cromatina , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Histonas/metabolismo , Nucleosomas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
12.
EMBO J ; 40(1): e105907, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33073403

RESUMEN

Nucleosomes are dynamic entities with wide-ranging compositional variations. Human histone variants H2A.B and H2A.Z.2.2 play critical roles in multiple biological processes by forming unstable nucleosomes and open chromatin structures, but how H2A.B and H2A.Z.2.2 confer these dynamic features to nucleosomes remains unclear. Here, we report cryo-EM structures of nucleosome core particles containing human H2A.B (H2A.B-NCP) at atomic resolution, identifying large-scale structural rearrangements in the histone octamer in H2A.B-NCP. H2A.B-NCP compacts approximately 103 bp of DNA wrapping around the core histones in approximately 1.2 left-handed superhelical turns, in sharp contrast to canonical nucleosome encompassing approximately 1.7 turns of DNA. Micrococcal nuclease digestion assay reveals that nineteen H2A.B-specific residues, including a ROF ("regulating-octamer-folding") sequence of six consecutive residues, are responsible for loosening of H2A.B-NCPs. Unlike H2A.B-NCP, the H2A.Z.2.2-containing nucleosome (Z.2.2-NCP) adopts a less-extended structure and compacts around 125 bp of DNA. Further investigation uncovers a crucial role for the H2A.Z.2.2-specific ROF in both H2A.Z.2.2-NCP opening and SWR1-dependent histone replacement. Taken together, these first high-resolution structure of unstable nucleosomes induced by histone H2A variants elucidate specific functions of H2A.B and H2A.Z.2.2 in enhancing chromatin dynamics.


Asunto(s)
Histonas/metabolismo , Nucleosomas/metabolismo , Secuencia de Aminoácidos , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , ADN/metabolismo , Humanos , Modelos Moleculares , Unión Proteica/fisiología
13.
J Mol Biol ; 433(6): 166744, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33309853

RESUMEN

Gene regulation programs establish cellular identity and rely on dynamic changes in the structural packaging of genomic DNA. The DNA is packaged in chromatin, which is formed from arrays of nucleosomes displaying different degree of compaction and different lengths of inter-nucleosomal linker DNA. The nucleosome represents the repetitive unit of chromatin and is formed by wrapping 145-147 basepairs of DNA around an octamer of histone proteins. Each of the four histones is present twice and has a structured core and intrinsically disordered terminal tails. Chromatin dynamics are triggered by inter- and intra-nucleosome motions that are controlled by the DNA sequence, the interactions between the histone core and the DNA, and the conformations, positions, and DNA interactions of the histone tails. Understanding chromatin dynamics requires studying all these features at the highest possible resolution. For this, molecular dynamics simulations can be used as a powerful complement or alternative to experimental approaches, from which it is often very challenging to characterize the structural features and atomic interactions controlling nucleosome motions. Molecular dynamics simulations can be performed at different resolutions, by coarse graining the molecular system with varying levels of details. Here we review the successes and the remaining challenges of the application of atomic resolution simulations to study the structure and dynamics of nucleosomes and their complexes with interacting partners.


Asunto(s)
ADN/química , Histonas/química , Nucleosomas/ultraestructura , Procesamiento Proteico-Postraduccional , Acetilación , Ensamble y Desensamble de Cromatina , ADN/genética , ADN/metabolismo , Histonas/genética , Histonas/metabolismo , Metilación , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Nucleosomas/química , Nucleosomas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas
14.
J Cell Sci ; 133(3)2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31932509

RESUMEN

The regulation of telomere and centromere structure and function is essential for maintaining genome integrity. Schizosaccharomyces pombe Rrp1 and Rrp2 are orthologues of Saccharomyces cerevisiae Uls1, a SWI2/SNF2 DNA translocase and SUMO-targeted ubiquitin ligase. Here, we show that Rrp1 or Rrp2 overproduction leads to chromosome instability and growth defects, a reduction in global histone levels and mislocalisation of centromere-specific histone Cnp1. These phenotypes depend on putative DNA translocase activities of Rrp1 and Rrp2, suggesting that Rrp1 and Rrp2 may be involved in modulating nucleosome dynamics. Furthermore, we confirm that Rrp2, but not Rrp1, acts at telomeres, reflecting a previously described interaction between Rrp2 and Top2. In conclusion, we identify roles for Rrp1 and Rrp2 in maintaining centromere function by modulating histone dynamics, contributing to the preservation of genome stability during vegetative cell growth.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Centrómero/genética , Proteínas Cromosómicas no Histona/genética , ADN , Inestabilidad Genómica/genética , Humanos , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Telómero/genética
15.
Trends Biochem Sci ; 45(1): 13-26, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31630896

RESUMEN

Gene regulation in eukaryotes requires the controlled access of sequence-specific transcription factors (TFs) to their sites in a chromatin landscape dominated by nucleosomes. Nucleosomes are refractory to TF binding, and often must be removed from regulatory regions. Recent genomic studies together with in vitro measurements suggest that the nucleosome barrier to TF binding is modulated by dynamic nucleosome unwrapping governed by ATP-dependent chromatin remodelers. Genome-wide occupancy and the regulation of subnucleosomal intermediates have gained recent attention with the application of high-resolution approaches for precision mapping of protein-DNA interactions. We summarize here recent findings on nucleosome substructures and TF binding dynamics, and highlight how unwrapped nucleosomal intermediates provide a novel signature of active chromatin.


Asunto(s)
Epigenoma/genética , Nucleosomas/genética , Nucleosomas/metabolismo , Humanos , Factores de Transcripción/metabolismo
16.
Mol Cell ; 76(4): 660-675.e9, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31542297

RESUMEN

Histone posttranslational modifications (PTMs) regulate chromatin structure and dynamics during various DNA-associated processes. Here, we report that lysine glutarylation (Kglu) occurs at 27 lysine residues on human core histones. Using semi-synthetic glutarylated histones, we show that an evolutionarily conserved Kglu at histone H4K91 destabilizes nucleosome in vitro. In Saccharomyces cerevisiae, the replacement of H4K91 by glutamate that mimics Kglu influences chromatin structure and thereby results in a global upregulation of transcription and defects in cell-cycle progression, DNA damage repair, and telomere silencing. In mammalian cells, H4K91glu is mainly enriched at promoter regions of highly expressed genes. A downregulation of H4K91glu is tightly associated with chromatin condensation during mitosis and in response to DNA damage. The cellular dynamics of H4K91glu is controlled by Sirt7 as a deglutarylase and KAT2A as a glutaryltransferase. This study designates a new histone mark (Kglu) as a new regulatory mechanism for chromatin dynamics.


Asunto(s)
Ensamble y Desensamble de Cromatina , Daño del ADN , Glutaratos/metabolismo , Histonas/metabolismo , Mitosis , Nucleosomas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Células HEK293 , Células HL-60 , Células HeLa , Células Hep G2 , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Humanos , Lisina , Ratones , Nucleosomas/genética , Células RAW 264.7 , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Sirtuinas/genética , Sirtuinas/metabolismo , Factores de Tiempo
17.
Cell Rep ; 28(1): 282-294.e6, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31269447

RESUMEN

Nucleosomes are the fundamental building blocks of chromatin that regulate DNA access and are composed of histone octamers. ATP-dependent chromatin remodelers like ISW2 regulate chromatin access by translationally moving nucleosomes to different DNA regions. We find that histone octamers are more pliable than previously assumed and distorted by ISW2 early in remodeling before DNA enters nucleosomes and the ATPase motor moves processively on nucleosomal DNA. Uncoupling the ATPase activity of ISW2 from nucleosome movement with deletion of the SANT domain from the C terminus of the Isw2 catalytic subunit traps remodeling intermediates in which the histone octamer structure is changed. We find restricting histone movement by chemical crosslinking also traps remodeling intermediates resembling those seen early in ISW2 remodeling with loss of the SANT domain. Other evidence shows histone octamers are intrinsically prone to changing their conformation and can be distorted merely by H3-H4 tetramer disulfide crosslinking.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina/genética , Histonas/metabolismo , Nucleosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , Dominio Catalítico/genética , Simulación por Computador , Huella de ADN , Histonas/química , Espectrometría de Masas , Modelos Moleculares , Nucleosomas/química , Unión Proteica , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
18.
Methods Mol Biol ; 1991: 91-100, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31041766

RESUMEN

The dynamic nature of chromatin is the basis for the regulation of various biological processes in eukaryotic organisms. Nucleosome, the basic unit of chromatin in eukaryotes, undergo various reversible posttranslational modifications (PTM) in response to both external and internal cues. This PTM is recognized by different reader molecules, which facilitates the recruitment of various chromatin remodeling proteins that modulate the chromatin structure. In plants, the promoters of active genes are associated with higher lysine acetylation of histones H3 and H4, and these modifications are recognized by Bromo-domain (BRM) containing chromatin remodelers. This leads to the remodeling of the nucleosome at promoter regions, thereby increasing accessibility of the transcription machinery. It also plays a role in transcriptional repression when enriched in repressed genes. Lysine methylation recruits methyl-binding domain-containing proteins such as LIKE HETEROCHROMATIN PROTEIN1 (LHP1), which facilitates a more condensed chromatin structure that further inhibits access by the transcriptional machinery. In this article, protocols to study the regulation of chromatin conformations and nucleosome dynamics in plants in response to different stress signals are provided.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Nucleosomas/fisiología , Oryza/genética , Estrés Fisiológico , Cromatina/genética , Histonas/genética , Oryza/metabolismo
19.
Elife ; 82019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30681413

RESUMEN

Monoubiquitination of histone H2B (H2B-Ub) plays a role in transcription and DNA replication, and is required for normal localization of the histone chaperone, FACT. In yeast, H2B-Ub is deubiquitinated by Ubp8, a subunit of SAGA, and Ubp10. Although they target the same substrate, loss of Ubp8 and Ubp10 cause different phenotypes and alter the transcription of different genes. We show that Ubp10 has poor activity on yeast nucleosomes, but that the addition of FACT stimulates Ubp10 activity on nucleosomes and not on other substrates. Consistent with a role for FACT in deubiquitinating H2B in vivo, a FACT mutant strain shows elevated levels of H2B-Ub. Combination of FACT mutants with deletion of Ubp10, but not Ubp8, confers increased sensitivity to hydroxyurea and activates a cryptic transcription reporter, suggesting that FACT and Ubp10 may coordinate nucleosome assembly during DNA replication and transcription. Our findings reveal unexpected interplay between H2B deubiquitination and nucleosome dynamics.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Elongación Transcripcional/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Alelos , Replicación del ADN/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Hidroxiurea/farmacología , Mutación/genética , Nucleosomas/efectos de los fármacos , Fenotipo , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Transcripción Genética/efectos de los fármacos , Ubiquitina/metabolismo , Ubiquitinación/efectos de los fármacos
20.
Mol Cell ; 73(2): 238-249.e3, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30554944

RESUMEN

The classic view of nucleosome organization at active promoters is that two well-positioned nucleosomes flank a nucleosome-depleted region (NDR). However, this view has been recently disputed by contradictory reports as to whether wider (≳150 bp) NDRs instead contain unstable, micrococcal nuclease-sensitive ("fragile") nucleosomal particles. To determine the composition of fragile particles, we introduce CUT&RUN.ChIP, in which targeted nuclease cleavage and release is followed by chromatin immunoprecipitation. We find that fragile particles represent the occupancy of the RSC (remodeling the structure of chromatin) nucleosome remodeling complex and RSC-bound, partially unwrapped nucleosomal intermediates. We also find that general regulatory factors (GRFs) bind to partially unwrapped nucleosomes at these promoters. We propose that RSC binding and its action cause nucleosomes to unravel, facilitate subsequent binding of GRFs, and constitute a dynamic cycle of nucleosome deposition and clearance at the subset of wide Pol II promoter NDRs.


Asunto(s)
Ensamble y Desensamble de Cromatina , Inmunoprecipitación de Cromatina/métodos , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Nucleasa Microcócica/metabolismo , Nucleosomas/enzimología , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Factores de Transcripción/metabolismo , Sitios de Unión , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Conformación de Ácido Nucleico , Nucleosomas/genética , Unión Proteica , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA