Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 367
Filtrar
1.
Elife ; 132024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221912

RESUMEN

The hox operon in Synechocystis sp. PCC 6803, encoding bidirectional hydrogenase responsible for H2 production, is transcriptionally upregulated under microoxic conditions. Although several regulators for hox transcription have been identified, their dynamics and higher-order DNA structure of hox region in microoxic conditions remain elusive. We focused on key regulators for the hox operon: cyAbrB2, a conserved regulator in cyanobacteria, and SigE, an alternative sigma factor. Chromatin immunoprecipitation sequencing revealed that cyAbrB2 binds to the hox promoter region under aerobic conditions, with its binding being flattened in microoxic conditions. Concurrently, SigE exhibited increased localization to the hox promoter under microoxic conditions. Genome-wide analysis revealed that cyAbrB2 binds broadly to AT-rich genome regions and represses gene expression. Moreover, we demonstrated the physical interactions of the hox promoter region with its distal genomic loci. Both the transition to microoxic conditions and the absence of cyAbrB2 influenced the chromosomal interaction. From these results, we propose that cyAbrB2 is a cyanobacterial nucleoid-associated protein (NAP), modulating chromosomal conformation, which blocks RNA polymerase from the hox promoter in aerobic conditions. We further infer that cyAbrB2, with altered localization pattern upon microoxic conditions, modifies chromosomal conformation in microoxic conditions, which allows SigE-containing RNA polymerase to access the hox promoter. The coordinated actions of this NAP and the alternative sigma factor are crucial for the proper hox expression in microoxic conditions. Our results highlight the impact of cyanobacterial chromosome conformation and NAPs on transcription, which have been insufficiently investigated.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Hidrogenasas , Regiones Promotoras Genéticas , Synechocystis , Synechocystis/genética , Synechocystis/metabolismo , Synechocystis/enzimología , Hidrogenasas/metabolismo , Hidrogenasas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Fermentación , Operón
2.
Biomolecules ; 14(8)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39199383

RESUMEN

Herein, we investigated the toxicity and membrane-permeabilizing capabilities of Lpt and Lpt-like peptides, belonging to type I toxin-antitoxin systems carried by plasmid DNA of Lacticaseibacillus strains. These 29 amino acid peptides are predicted to form α-helical structures with a conserved central hydrophobic sequence and differently charged hydrophilic termini. Like Lpt, the expression of Lpt-like in E. coli induced growth arrest, nucleoid condensation, and cell membrane damage, suggesting membrane interaction as the mode of action. The membrane permeabilization activity of both peptides was evaluated by using liposome leakage assays, dynamic light scattering, and CD spectroscopy. Lpt and Lpt-like showed liposome leakage activity, which did not lead to liposome disruption but depended on peptide concentration. Lpt was generally more effective than Lpt-like, probably due to different physical chemical properties. Leakage was significantly reduced in larger liposomes and increased with negatively charged PCPS liposomes, indicating that electrostatic interactions and membrane curvature influence peptide activity. Contrary to most membrane-active peptides, Lpt an Lpt-like progressively lost their α-helical structure upon interaction with liposomes. Our data are inconsistent with the formation of membrane-spanning peptide pores but support a mechanism relying on the transient failure of the membrane permeability barrier possibly through the formation of "lipid pores".


Asunto(s)
Permeabilidad de la Membrana Celular , Escherichia coli , Liposomas , Liposomas/química , Liposomas/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Péptidos/química , Péptidos/metabolismo , Membrana Celular/metabolismo , Membrana Celular/química , Secuencia de Aminoácidos
3.
Anat Histol Embryol ; 53(5): e13103, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39155839

RESUMEN

Dromedary camels can survive and reproduce in desert areas. The unique anatomical structure of the kidney enables the camel to prevent water loss. The present study aimed to investigate the ultrastructure of the peroxisomes in the normal kidney of the adult dromedary camel. Tissue samples were taken from the cortex and outer medulla of the kidney of eight camels. The samples were then processed for histological and ultrastructural investigations. The epithelial cells of the proximal tubules displayed peroxisomes with varying sizes and shapes. The peroxisomes were observed in either dispersed or clustered arrangement. Each peroxisome exhibited a homogenous matrix enveloped by a single membrane. Several peroxisomes exhibited one or more dark marginal plates that were always strongly associated with the smooth endoplasmic reticulum. The intensity of the peroxisomal matrix differed significantly, either within the same cell or across different cells. The intensity was light or dark, with a few peroxisomes presenting a similar intensity to that of the mitochondria. Some peroxisomes contained nucleoids within their matrix. The peroxisomes in the first and second sections of proximal convoluted tubules were scattered and primarily located in the region between the microvilli and the underlying mitochondria. The peroxisomes in the third region were abundant and frequently aggregated in clusters throughout the cytoplasm. In the fourth region, the number of peroxisomes was low. The proximal straight tubule had a limited quantity of peroxisomes. In conclusion, peroxisomes in the proximal tubule in kidney of normal dromedary camel were similar in shape and size to other mammals; however, heterogeneity exists as a result of differences in species-specific peroxisomal proteins. Peroxisomes are suggested to be a major source of metabolic energy and act as hydrogen peroxide (H2O2) scavengers, resulting in the release of water and oxygen.


Asunto(s)
Camelus , Riñón , Peroxisomas , Animales , Camelus/anatomía & histología , Camelus/fisiología , Peroxisomas/ultraestructura , Peroxisomas/metabolismo , Riñón/ultraestructura , Riñón/anatomía & histología , Microscopía Electrónica de Transmisión/veterinaria , Masculino , Túbulos Renales Proximales/ultraestructura , Túbulos Renales Proximales/anatomía & histología
4.
Front Cell Infect Microbiol ; 14: 1379106, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193505

RESUMEN

Background: Type VI secretion system (T6SS) is widely present in Gram-negative bacteria and directly mediates antagonistic prokaryote interactions. PAAR (proline-alanine-alanine-arginine repeats) proteins have been proven essential for T6SS-mediated secretion and target cell killing. Although PAAR proteins are commonly found in A. baumannii, their biological functions are not fully disclosed yet. In this study, we investigated the functions of a PAAR protein termed TagP (T6SS-associated-gene PAAR), encoded by the gene ACX60_RS09070 outside the core T6SS locus of A. baumannii strain ATCC 17978. Methods: In this study, tagP null and complement A. baumannii ATCC 17978 strains were constructed. The influence of TagP on T6SS function was investigated through Hcp detection and bacterial competition assay; the influence on environmental fitness was studied through in vitro growth, biofilm formation assay, surface motility assay, survivability in various simulated environmental conditions; the influence on pathogenicity was explored through cell adhesion and invasion assays, intramacrophage survival assay, serum survival assay, and G. melonella Killing assays. Quantitative transcriptomic and proteomic analyses were utilized to observe the global impact of TagP on bacterial status. Results: Compared with the wildtype strain, the tagP null mutant was impaired in several tested phenotypes such as surface motility, biofilm formation, tolerance to adverse environments, adherence to eukaryotic cells, endurance to serum complement killing, and virulence to Galleria melonella. Notably, although RNA-Seq and proteomics analysis revealed that many genes were significantly down-regulated in the tagP null mutant compared to the wildtype strain, there is no significant difference in their antagonistic abilities. We also found that Histone-like nucleoid structuring protein (H-NS) was significantly upregulated in the tagP null mutant at both mRNA and protein levels. Conclusions: This study enriches our understanding of the biofunction of PAAR proteins in A. baumannii. The results indicates that TagP involved in a unique modulation of fitness and virulence control in A. baumannii, it is more than a classic PAAR protein involved in T6SS, while how TagP play roles in the fitness and virulence of A. baumannii needs further investigation to clarify.


Asunto(s)
Acinetobacter baumannii , Proteínas Bacterianas , Biopelículas , Sistemas de Secreción Tipo VI , Acinetobacter baumannii/genética , Acinetobacter baumannii/patogenicidad , Acinetobacter baumannii/metabolismo , Virulencia/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Biopelículas/crecimiento & desarrollo , Animales , Regulación Bacteriana de la Expresión Génica , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Proteómica , Perfilación de la Expresión Génica , Adhesión Bacteriana/genética , Ratones , Infecciones por Acinetobacter/microbiología , Aptitud Genética , Macrófagos/microbiología , Proteoma
5.
Methods Mol Biol ; 2819: 55-75, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028502

RESUMEN

DNA-protein interactions occur in biological processes such as genome replication, gene transcription, DNA repair, and chromatin compaction and organization. Mapping the distribution of the DNA-bound proteins on the chromosome is essential for understanding their associated biological process. Chromatin immunoprecipitation (ChIP) involves the antibody-mediated enrichment of DNA fragments bound by a target protein and has become one of the most powerful techniques for exploring the distribution of proteins on the chromosome. By incorporating quantitative polymerase chain reaction (qPCR) downstream of the ChIP assay, ChIP-qPCR was developed to describe binding profiles of DNA-associated proteins at a candidate locus. In this chapter, we describe ChIP-qPCR. We provide a step-by-step protocol for the preparation of a ChIP library of a 3× FLAG-tagged protein in bacteria, describe how downstream qPCR experiments can be performed with the appropriate controls, and explain how the data is analyzed. This chapter provides reliable technical guidance for ChIP-qPCR studies in bacteria.


Asunto(s)
Inmunoprecipitación de Cromatina , Inmunoprecipitación de Cromatina/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Bacterias/genética , Bacterias/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo
6.
Methods Mol Biol ; 2819: 225-240, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028509

RESUMEN

Bacterial nucleoid-associated proteins are important factors in regulation of transcription, in nucleoid structuring, and in homeostasis of DNA supercoiling. Vice versa, transcription influences DNA supercoiling and can affect DNA binding of nucleoid-associated proteins (NAPs) such as H-NS in Escherichia coli. Here we describe genetic tools to study the interplay between transcription and nucleoid-associated proteins in E. coli. These methods include construction of genomic and plasmidic transcriptional and translational lacZ reporter gene fusions to study regulation of promoters; insertion of promoter cassettes to drive transcription into a locus of interest in the genome, for example, an H-NS-bound locus; and construction of isogenic hns and stpA mutants and precautions in doing so.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Escherichia coli , Escherichia coli , Transcripción Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Genes Reporteros , Plásmidos/genética , ADN Bacteriano/genética
7.
Mol Microbiol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039769

RESUMEN

Common throughout life is the need to compact and organize the genome. Possible mechanisms involved in this process include supercoiling, phase separation, charge neutralization, macromolecular crowding, and nucleoid-associated proteins (NAPs). NAPs are special in that they can organize the genome at multiple length scales, and thus are often considered as the architects of the genome. NAPs shape the genome by either bending DNA, wrapping DNA, bridging DNA, or forming nucleoprotein filaments on the DNA. In this mini-review, we discuss recent advancements of unique NAPs with differing architectural properties across the tree of life, including NAPs from bacteria, archaea, and viruses. To help the characterization of NAPs from the ever-increasing number of metagenomes, we recommend a set of cheap and simple in vitro biochemical assays that give unambiguous insights into the architectural properties of NAPs. Finally, we highlight and showcase the usefulness of AlphaFold in the characterization of novel NAPs.

8.
Antibiotics (Basel) ; 13(7)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39061357

RESUMEN

Current antibiograms cannot discern the particular effect of a specific antibiotic when the bacteria are incubated with a mixture of antibiotics. To prove that this task is achievable, Escherichia coli strains were treated with ciprofloxacin for 45 min, immobilized on a slide and stained with SYBR Gold. In susceptible strains, the nucleoid relative surface started to decrease near the MIC, being progressively condensed as the dose increased. The shrinkage level correlated with the DNA fragmentation degree. Ciprofloxacin-resistant bacilli showed no change. Additionally, E. coli strains were incubated with ampicillin for 45 min and processed similarly. The ampicillin-susceptible strain revealed intercellular DNA fragments that increased with dose, unlike the resistant strain. Co-incubation with both antibiotics revealed that ampicillin did not modify the nucleoid condensation effect of ciprofloxacin, whereas the quinolone partially decreased the background of DNA fragments induced by ampicillin. Sixty clinical isolates, with different combinations of susceptibility-resistance to each antibiotic, were co-incubated with the EUCAST breakpoints of susceptibility of ciprofloxacin and ampicillin. The morphological assay correctly categorized all the strains for each antibiotic in 60 min, demonstrating the feasible independent evaluation of a mixture of quinolone and beta-lactam. The rapid phenotypic assay may shorten the incubation times and necessary microbial mass currently required for evaluation.

9.
Front Microbiol ; 15: 1422977, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070263

RESUMEN

Combined-cultures involving mycolic acid-containing bacteria (MACB) can stimulate secondary metabolite (SM) production in actinomycetes. In a prior investigation, we screened Streptomyces coelicolor JCM4020 mutants with diminished production of SMs, specifically undecylprodigiosin (RED), which was enhanced by introducing the MACB Tsukamurella pulmonis TP-B0596. In this study, we conducted mutational analysis that pinpointed the sco1842 gene, which we assigned the gene name ccr1 (combined-culture related regulatory protein no. 1), as a crucial factor in the deficient phenotype observed in the production of various major SMs in S. coelicolor A3(2). Notably, the Ccr1 (SCO1842) homolog was found to be highly conserved throughout the Streptomyces genome. Although Ccr1 lacked conserved motifs, in-depth examination revealed the presence of a helix-turn-helix (HTH) motif in the N-terminal region and a helicase C-terminal domain (HCTD) motif in the C-terminal region in some of its homologs. Ccr1 was predicted to be a nucleoid-associated protein (NAP), and its impact on gene transcription was validated by RNA-seq analysis that revealed genome-wide variations. Furthermore, RT-qPCR demonstrated that ccr1 was transcriptionally activated in combined-culture with T. pulmonis, which indicated that Ccr1 is involved in the response to bacterial interaction. We then investigated Streptomyces nigrescens HEK616 in combined-culture, and the knockout mutant of the ccr1 homolog displayed reduced production of streptoaminals and 5aTHQs. This finding reveals that the Ccr1 homolog in Streptomyces species is associated with SM production. Our study elucidates the existence of a new family of NAP-like proteins that evolved in Streptomyces species and play a pivotal role in SM production.

10.
BMC Plant Biol ; 24(1): 723, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080534

RESUMEN

BACKGROUND: 6 - 4 photoproducts are the second most common UV-induced DNA lesions after cyclobutane pyrimidine dimers. In plants, they are mainly repaired by photolyases in a process called photoreactivation. While pyrimidine dimers can be deleterious, leading to mutagenesis or even cell death, 6 - 4 photoproducts can activate specific signaling pathways. Therefore, their removal is particularly important, especially for plants exposed to high UV intensities due to their sessile nature. Although photoreactivation in nuclear DNA is well-known, its role in plant organelles remains unclear. In this paper we analyzed the activity and localization of GFP-tagged AtUVR3, the 6 - 4 photoproduct specific photolyase. RESULTS: Using transgenic Arabidopsis with different expression levels of AtUVR3, we confirmed a positive trend between these levels and the rate of 6 - 4 photoproduct removal under blue light. Measurements of 6 - 4 photoproduct levels in chloroplast and nuclear DNA of wild type, photolyase mutants, and transgenic plants overexpressing AtUVR3 showed that the photoreactivation is the main repair pathway responsible for the removal of these lesions in both organelles. The GFP-tagged AtUVR3 was predominantly located in nuclei with a small fraction present in chloroplasts and mitochondria of transgenic Arabidopsis thaliana and Nicotiana tabacum lines. In chloroplasts, this photolyase co-localized with the nucleoid marked by plastid envelope DNA binding protein. CONCLUSIONS: Photolyases are mainly localized in plant nuclei, with only a small fraction present in chloroplasts and mitochondria. Despite this unbalanced distribution, photoreactivation is the primary mechanism responsible for the removal of 6 - 4 photoproducts from nuclear and chloroplast DNA in adult leaves. The amount of the AtUVR3 photolyase is the limiting factor influencing the photoreactivation rate of 6 - 4 photoproducts. The efficient photoreactivation of 6 - 4 photoproducts in 35S: AtUVR3-GFP Arabidopsis and Nicotiana tabacum is a promising starting point to evaluate whether transgenic crops overproducing this photolyase are more tolerant to high UV irradiation and how they respond to other abiotic and biotic stresses under field conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Núcleo Celular , Reparación del ADN , Desoxirribodipirimidina Fotoliasa , Plantas Modificadas Genéticamente , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Desoxirribodipirimidina Fotoliasa/metabolismo , Desoxirribodipirimidina Fotoliasa/genética , Rayos Ultravioleta , ADN de Plantas/metabolismo , ADN de Plantas/genética , Dímeros de Pirimidina/metabolismo , Dímeros de Pirimidina/genética , ADN de Cloroplastos/genética , ADN de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Daño del ADN
11.
Methods Mol Biol ; 2819: 263-277, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028511

RESUMEN

This protocol describes the application of atomic force microscopy for structural analysis of prokaryotic and organellar nucleoids. It is based on a simple cell manipulation procedure that enables stepwise dissection of the nucleoid. The procedure includes (i) on-substrate lysis of cells and (ii) enzyme treatment, followed by atomic force microscopy. This type of dissection analysis permits analysis of nucleoid structure ranging from the fundamental units assembled on DNA to higher-order levels of organization. The combination with molecular-genetic and biochemical techniques further permits analysis of the functions of key nucleoid factors relevant to signal-induced structural reorganization or building up of basic structures, as seen for Dps in Escherichia coli and TrmBL2 in Thermococcus kodakarensis. These systems are described here as examples of the successful application of AFM for this purpose. Moreover, we describe the procedures needed for quantitative analysis of the data.


Asunto(s)
Microscopía de Fuerza Atómica , Microscopía de Fuerza Atómica/métodos , Escherichia coli/genética , Genoma Bacteriano , Thermococcus/genética , Células Procariotas/metabolismo
12.
Methods Mol Biol ; 2819: 381-419, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028516

RESUMEN

Bacterial chromosomal DNA is structured and compacted by proteins known as bacterial chromatin proteins (i.e., nucleoid-associated proteins or NAPs). DNA-dependent RNA polymerase (RNAP) must frequently interact with bacterial chromatin proteins because they often bind DNA genome-wide. In some cases, RNAP must overcome barriers bacterial chromatin proteins impose on transcription. One key bacterial chromatin protein in Escherichia coli that influences transcription is the histone-like nucleoid structuring protein, H-NS. H-NS binds to DNA and forms nucleoprotein filaments. To investigate the effect of H-NS filaments on RNAP elongation, we developed an in vitro transcription assay to monitor RNAP progression on a DNA template bound by H-NS. In this method, initiation and elongation by RNAP are uncoupled by first initiating transcription in the presence of only three ribonucleoside triphosphates (rNTPs) to halt elongation just downstream of the promoter. Before elongation is restarted by addition of the fourth NTP, an H-NS filament is formed on the DNA so that transcript elongation occurs on an H-NS nucleoprotein filament template. Here, we provide detailed protocols for performing in vitro transcription through H-NS filaments, analysis of the transcription products, and visualization of H-NS filament formation on DNA by electrophoretic mobility shift assay (EMSA). These methods enable insight into how H-NS affects RNAP transcript elongation and provide a starting point to determine effects of other bacterial chromatin proteins on RNAP elongation.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Proteínas de Escherichia coli , Escherichia coli , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Transcripción Genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Elongación de la Transcripción Genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/genética
13.
Methods Mol Biol ; 2819: 279-295, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028512

RESUMEN

Atomic force microscopy is a high-resolution imaging technique useful for observing the structures of biomolecular complexes. This approach provides a straightforward method to characterize the binding behavior of different chromatin architectural proteins and to analyze the increasingly complex structural units assembled on the DNA. The protocol describes the preparation, AFM imaging, and structural analysis of chromatin that is reconstituted in vitro using purified proteins and DNA. Here, we describe the successful application of the method on the chromatin architectural proteins of the archaeon Sulfolobus solfataricus.


Asunto(s)
ADN , Microscopía de Fuerza Atómica , Sulfolobus solfataricus , Microscopía de Fuerza Atómica/métodos , Sulfolobus solfataricus/metabolismo , ADN/química , ADN/metabolismo , Cromatina/metabolismo , Cromatina/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Unión Proteica
14.
Methods Mol Biol ; 2819: 497-518, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028521

RESUMEN

The binding constant is an important characteristic of a DNA-binding protein. A large number of methods exist to measure the binding constant, but many of those methods have intrinsic flaws that influence the outcome of the characterization. Tethered particle motion (TPM) is a simple, cheap, and high-throughput single-molecule method that can be used to measure binding constants of proteins binding to DNA reliably, provided that they distort DNA. In TPM, the motion of a bead tethered to a surface by DNA is tracked using light microscopy. A protein binding to the DNA will alter bead motion. This change in bead motion makes it possible to measure the DNA-binding properties of proteins. We use the bacterial protein integration host factor (IHF) and the archaeal histone HMfA as examples to show how specific binding to DNA can be measured. Moreover, we show how the end-to-end distance can provide structural insights into protein-DNA binding.


Asunto(s)
ADN , Unión Proteica , ADN/metabolismo , ADN/química , Imagen Individual de Molécula/métodos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Factores de Integración del Huésped/metabolismo , Factores de Integración del Huésped/química , Histonas/metabolismo , Histonas/química , Movimiento (Física)
15.
mSphere ; 9(7): e0001124, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38920383

RESUMEN

Vibrio cholerae, the causative agent of the diarrheal disease cholera, poses an ongoing health threat due to its wide repertoire of horizontally acquired elements (HAEs) and virulence factors. New clinical isolates of the bacterium with improved fitness abilities, often associated with HAEs, frequently emerge. The appropriate control and expression of such genetic elements is critical for the bacteria to thrive in the different environmental niches they occupy. H-NS, the histone-like nucleoid structuring protein, is the best-studied xenogeneic silencer of HAEs in gamma-proteobacteria. Although H-NS and other highly abundant nucleoid-associated proteins (NAPs) have been shown to play important roles in regulating HAEs and virulence in model bacteria, we still lack a comprehensive understanding of how different NAPs modulate transcription in V. cholerae. By obtaining genome-wide measurements of protein occupancy and active transcription in a clinical isolate of V. cholerae, harboring recently discovered HAEs encoding for phage defense systems, we show that a lack of H-NS causes a robust increase in the expression of genes found in many HAEs. We further found that TsrA, a protein with partial homology to H-NS, regulates virulence genes primarily through modulation of H-NS activity. We also identified few sites that are affected by TsrA independently of H-NS, suggesting TsrA may act with diverse regulatory mechanisms. Our results demonstrate how the combinatorial activity of NAPs is employed by a clinical isolate of an important pathogen to regulate recently discovered HAEs. IMPORTANCE: New strains of the bacterial pathogen Vibrio cholerae, bearing novel horizontally acquired elements (HAEs), frequently emerge. HAEs provide beneficial traits to the bacterium, such as antibiotic resistance and defense against invading bacteriophages. Xenogeneic silencers are proteins that help bacteria harness new HAEs and silence those HAEs until they are needed. H-NS is the best-studied xenogeneic silencer; it is one of the nucleoid-associated proteins (NAPs) in gamma-proteobacteria and is responsible for the proper regulation of HAEs within the bacterial transcriptional network. We studied the effects of H-NS and other NAPs on the HAEs of a clinical isolate of V. cholerae. Importantly, we found that H-NS partners with a small and poorly characterized protein, TsrA, to help domesticate new HAEs involved in bacterial survival and in causing disease. A proper understanding of the regulatory state in emerging isolates of V. cholerae will provide improved therapies against new isolates of the pathogen.


Asunto(s)
Proteínas Bacterianas , Cólera , Regulación Bacteriana de la Expresión Génica , Vibrio cholerae , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/patogenicidad , Vibrio cholerae/metabolismo , Cólera/microbiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Transcripción Genética , Virulencia , Factores de Virulencia/genética , Transferencia de Gen Horizontal
16.
Life (Basel) ; 14(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38929644

RESUMEN

Theoretical and experimental approaches have been applied to study the polymer physics underlying the compaction of DNA in the bacterial nucleoid. Knowledge of the compaction mechanism is necessary to obtain a mechanistic understanding of the segregation process of replicating chromosome arms (replichores) during the cell cycle. The first part of this review discusses light microscope observations demonstrating that the nucleoid has a lower refractive index and thus, a lower density than the cytoplasm. A polymer physics explanation for this phenomenon was given by a theory discussed at length in this review. By assuming a phase separation between the nucleoid and the cytoplasm and by imposing equal osmotic pressure and chemical potential between the two phases, a minimal energy situation is obtained, in which soluble proteins are depleted from the nucleoid, thus explaining its lower density. This theory is compared to recent views on DNA compaction that are based on the exclusion of polyribosomes from the nucleoid or on the transcriptional activity of the cell. These new views prompt the question of whether they can still explain the lower refractive index or density of the nucleoid. In the second part of this review, we discuss the question of how DNA segregation occurs in Escherichia coli in the absence of the so-called active ParABS system, which is present in the majority of bacteria. How is the entanglement of nascent chromosome arms generated at the origin in the parental DNA network of the E. coli nucleoid prevented? Microscopic observations of the position of fluorescently-labeled genetic loci have indicated that the four nascent chromosome arms synthesized in the initial replication bubble segregate to opposite halves of the sister nucleoids. This implies that extensive intermingling of daughter strands does not occur. Based on the hypothesis that leading and lagging replichores synthesized in the replication bubble fold into microdomains that do not intermingle, a passive four-excluding-arms model for segregation is proposed. This model suggests that the key for segregation already exists in the structure of the replication bubble at the very start of DNA replication; it explains the different patterns of chromosome arms as well as the segregation distances between replicated loci, as experimentally observed.

17.
Appl Environ Microbiol ; 90(7): e0010824, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38864629

RESUMEN

The extremophile Deinococcus radiodurans maintains a highly organized and condensed nucleoid as its default state, possibly contributing to its high tolerance to ionizing radiation (IR). Previous studies of the D. radiodurans nucleoid were limited by reliance on manual image annotation and qualitative metrics. Here, we introduce a high-throughput approach to quantify the geometric properties of cells and nucleoids using confocal microscopy, digital reconstructions of cells, and computational modeling. We utilize this novel approach to investigate the dynamic process of nucleoid condensation in response to IR stress. Our quantitative analysis reveals that at the population level, exposure to IR induced nucleoid compaction and decreased the size of D. radiodurans cells. Morphological analysis and clustering identified six distinct sub-populations across all tested experimental conditions. Results indicate that exposure to IR induced fractional redistributions of cells across sub-populations to exhibit morphologies associated with greater nucleoid condensation and decreased the abundance of sub-populations associated with cell division. Nucleoid-associated proteins (NAPs) may link nucleoid compaction and stress tolerance, but their roles in regulating compaction in D. radiodurans are unknown. Imaging of genomic mutants of known and suspected NAPs that contribute to nucleoid condensation found that deletion of nucleic acid-binding proteins, not previously described as NAPs, can remodel the nucleoid by driving condensation or decondensation in the absence of stress and that IR increased the abundance of these morphological states. Thus, our integrated analysis introduces a new methodology for studying environmental influences on bacterial nucleoids and provides an opportunity to further investigate potential regulators of nucleoid condensation.IMPORTANCEDeinococcus radiodurans, an extremophile known for its stress tolerance, constitutively maintains a highly condensed nucleoid. Qualitative studies have described nucleoid behavior under a variety of conditions. However, a lack of quantitative data regarding nucleoid organization and dynamics has limited our understanding of the regulatory mechanisms controlling nucleoid organization in D. radiodurans. Here, we introduce a quantitative approach that enables high-throughput quantitative measurements of subcellular spatial characteristics in bacterial cells. Applying this to wild-type or single-protein-deficient populations of D. radiodurans subjected to ionizing radiation, we identified significant stress-responsive changes in cell shape, nucleoid organization, and morphology. These findings highlight this methodology's adaptability and capacity for quantitatively analyzing the cellular response to stressors for screening cellular proteins involved in bacterial nucleoid organization.


Asunto(s)
Deinococcus , Radiación Ionizante , Deinococcus/efectos de la radiación , Deinococcus/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
18.
Front Microbiol ; 15: 1356733, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835483

RESUMEN

Nε-lysine acetylation is recognized as a prevalent post-translational modification (PTM) that regulates proteins across all three domains of life. In Bacillus subtilis, the histone-like protein HBsu is acetylated at seven sites, which regulates DNA compaction and the process of sporulation. In Mycobacteria, DNA compaction is a survival strategy in response antibiotic exposure. Acetylation of the HBsu ortholog HupB decondenses the chromosome to escape this drug-induced, non-growing state, and in addition, regulates the formation of drug-tolerant subpopulations by altering gene expression. We hypothesized that the acetylation of HBsu plays similar regulatory roles. First, we measured nucleoid area by fluorescence microscopy and in agreement, we found that wild-type cells compacted their nucleoids upon kanamycin exposure, but not exposure to tetracycline. We analyzed a collection of HBsu mutants that contain lysine substitutions that mimic the acetylated (glutamine) or unacetylated (arginine) forms of the protein. Our findings indicate that some level of acetylation is required at K3 for a proper response and K75 must be deacetylated. Next, we performed time-kill assays of wild-type and mutant strains in the presence of different antibiotics and found that interfering with HBsu acetylation led to faster killing rates. Finally, we examined the persistent subpopulation and found that altering the acetylation status of HBsu led to an increase in persister cell formation. In addition, we found that most of the deacetylation-mimic mutants, which have compacted nucleoids, were delayed in resuming growth following removal of the antibiotic, suggesting that acetylation is required to escape the persistent state. Together, this data adds an additional regulatory role for HBsu acetylation and further supports the existence of a histone-like code in bacteria.

19.
Mol Microbiol ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38922728

RESUMEN

Bacterial chromosomes are large molecules that need to be highly compacted to fit inside the cells. Chromosome compaction must facilitate and maintain key biological processes such as gene expression and DNA transactions (replication, recombination, repair, and segregation). Chromosome and chromatin 3D-organization in bacteria has been a puzzle for decades. Chromosome conformation capture coupled to deep sequencing (Hi-C) in combination with other "omics" approaches has allowed dissection of the structural layers that shape bacterial chromosome organization, from DNA topology to global chromosome architecture. Here we review the latest findings using Hi-C and discuss the main features of bacterial genome folding.

20.
Mol Microbiol ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38922783

RESUMEN

In every bacterium, nucleoid-associated proteins (NAPs) play crucial roles in chromosome organization, replication, repair, gene expression, and other DNA transactions. Their central role in controlling the chromatin dynamics and transcription has been well-appreciated in several well-studied organisms. Here, we review the diversity, distribution, structure, and function of NAPs from the genus Mycobacterium. We highlight the progress made in our understanding of the effects of these proteins on various processes and in responding to environmental stimuli and stress of mycobacteria in their free-living as well as during distinctive intracellular lifestyles. We project them as potential drug targets and discuss future studies to bridge the information gap with NAPs from well-studied systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA