Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 704
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39229749

RESUMEN

Research concerning coordination polymers has been intense due to their significant variability and structural stability. With this in mind, an ionic neodymium coordination polymer was synthesized, composed of an anionic one-dimensional polymer interconnected to a cationic three-dimensional porous polymer, poly[dodecaaquabis(µ-pyridine-4-carbohydrazide-κ2N:O)bis(µ2-4-sulfobenzoato-κ2O:O')bis(µ3-4-sulfobenzoato-κ3O:O':O'')trineodymium(III)] catena-poly[aquabis(µ-pyridine-4-carbohydrazide-κ2N:O)bis(µ2-4-sulfobenzoato-κ2O:O')neodymium(III)] 4.33-hydrate, {[Nd3(C7H4O5S)4(C6H7N3O)2(H2O)12][Nd(C7H4O5S)2(C6H7N3O)2(H2O)]·4.33H2O}n. The ligands used were 4-sulfobenzoate (PSB) and pyridine-4-carbohydrazide, popularly known as isoniazid (INH), an antibiotic drug. The compound crystallizes in the monoclinic space group C2/c, with Z = 4. Solid-state calculations suggest that the crystal structure is mainly stabilized by hydrogen bonds, i.e. O-H...O and N-H...O interactions among the polymers, and by van der Waals interactions involving the organic side chains. This net is tetragonal, 2-nodal 3,4-connected, and can be described as the dmd (sqc 528) type.

2.
Chemphyschem ; : e202400537, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39129653

RESUMEN

Noncovalent interactions are the basis for a large number of chemical and biological molecular-recognition processes, such as those occurring in supramolecular chemistry, catalysis, solid-state reactions in mechanochemistry, protein folding, protein-nucleic acid binding, and biomolecular phase separation processes. In this perspective article, some recent developments in probing noncovalent interactions by proton-detected solid-state Nuclear Magnetic Resonance (NMR) spectroscopy at Magic-Angle Spinning (MAS) frequencies of 100 kHz and more are reviewed. The development of MAS rotors with decreasing outer diameters, combined with the development of superconducting magnets operating at high static magnetic-field strengths up to 28.2 T (1200 MHz proton Larmor frequency) improves resolution and sensitivity in proton-detected solid-state NMR, which is the fundamental requirement for shedding light on noncovalent interactions in solids. The examples reported in this article range from protein-nucleic acid binding in large ATP-fueled motor proteins to a hydrogen-π interaction in a calixarene-lanthanide complex.

3.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39125845

RESUMEN

The benzene dimer (BD) is an archetypal model of π∙∙∙π and C-H∙∙∙π noncovalent interactions as they occur in its cofacial and perpendicular arrangements, respectively. The enthalpic stabilization of the related BD structures has been debated for a long time and is revisited here. The revisit is based on results of computations that apply the coupled-cluster theory with singles, doubles and perturbative triples [CCSD(T)] together with large basis sets and extrapolate results to the complete basis set (CBS) limit in order to accurately characterize the three most important stationary points of the intermolecular interaction energy (ΔE) surface of the BD, which correspond to the tilted T-shaped (TT), fully symmetric T-shaped (FT) and slipped-parallel (SP) structures. In the optimal geometries obtained by searching extensive sets of the CCSD(T)/CBS ΔE data of the TT, FT and SP arrangements, the resulting ΔE values were -11.84, -11.34 and -11.21 kJ/mol, respectively. The intrinsic strength of the intermolecular bonding in these configurations was evaluated by analyzing the distance dependence of the CCSD(T)/CBS ΔE data over wide ranges of intermonomer separations. In this way, regions of the relative distances that favor BD structures with either π∙∙∙π or C-H∙∙∙π interactions were found and discussed in a broader context.


Asunto(s)
Benceno , Dimerización , Benceno/química , Termodinámica , Modelos Moleculares , Teoría Cuántica , Enlace de Hidrógeno
4.
Int J Biol Macromol ; 278(Pt 1): 134654, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128748

RESUMEN

In this paper the effects on the interaction of highly positively charged substitution-inert platinum polynuclear complexes (SI-PPCs) with negatively charged DNA and heparin are examined and compared by theoretical chemistry methods. Electrostatic and hydrogen bonding interactions contribute to the overall effects on the biomolecule. Root Mean Square (RMS) deviation, Solvent Accessible Surface, RMS fluctuation, and interaction analysis all confirm similar effects on both biomolecules, dictated predominantly by the total positive charge and total number of hydrogen bonds formed. Especially, changes in structural parameters suggesting condensation and reduction of available surface area will reduce or prevent normal protein recognition and may thus potentially inhibit biological mechanisms related to apoptosis (DNA) or reduced vascularization viability (HEP). Thermodynamic analyses supported these findings with favourable interaction energies. The comparison of DNA and heparin confirms the general intersectionality between the two biomolecules and confirms the intrinsic dual-nature function of this chemotype. The distinction between the two-limiting mode of actions (HS or DNA-centred) could reflect an intriguing balance between extracellular (GAG) and intracellular (DNA) binding and affinities. The results underline the need to fully understand GAG-small molecule interactions and their contribution to drug pharmacology and related therapeutic modalities. This report contributes to that understanding.


Asunto(s)
ADN , Simulación de Dinámica Molecular , Espermidina , Espermina , Espermina/química , ADN/química , ADN/metabolismo , Espermidina/química , Espermidina/metabolismo , Heparina/química , Heparina/metabolismo , Termodinámica , Enlace de Hidrógeno , Electricidad Estática
5.
Chemistry ; : e202401461, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962895

RESUMEN

Atropisomers have attracted a great deal of attention lately due to their numerous applications in organic synthesis and to their employment in drug discovery. However, the synthetic arsenal at our disposal with which to access them remains limited. The research described herein is two-pronged; we both demonstrate the use of MCR chemistry as a synthetic strategy for the de novo synthesis of a class of atropisomers having high barriers to rotation with the simultaneous insertion of multiple chiral elements and we study these unprecedented molecular systems by employing a combination of crystallography, NMR and DFT calculations. By fully exploiting the synthetic capabilities of our chemistry, we have been able to monitor a range of different types of interaction, i. e. π-π, CH-π, heteroatom-π and CD-π, in order to conduct structure-property studies. The results could be applied both to atroposelective synthesis and in drug discovery.

6.
Chempluschem ; : e202400436, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051905

RESUMEN

Ammeline (AM) is a molecule with a very low reputation in the field of supramolecular community, but with a recently proven potential both experimentally and theoretically. In this work, dispersion-corrected density functional theory (DFT-D) computations and molecular dynamics (MD) simulations were employed to understand the aggregation mechanism of AM in chloroform and water media. Our DFT-D and MD analyzes show that the most important interactions are those formed by the amine groups (-NH2) with both the pyridine-type nitrogen atoms and the carbonyl groups (C=O). In the more polar solvent, the interactions between water molecules and the C=O group prevent the AM from forming more interactions with itself. Nevertheless, four types of dimers involving N-H∙∙∙O interactions were found to exist in water solutions. The overlooked tetrel bond between endocyclic N and C atoms can also stabilize dimers in solution. Moreover, while most AM dimers are enthalpy-driven, our results indicate that the unique DD-AA dimer (D=donor, A=acceptor) that originates cyclic rosettes is entropy-driven.

7.
Angew Chem Int Ed Engl ; : e202412056, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041859

RESUMEN

Solvent competition for London dispersion attenuates its energetic significance in molecular recognition processes. By varying both the stacked contact area and the solvent, here we experimentally deconvolute solvent attenuation using molecular balances. Experimental stacking energies (phenyl to pyrene) correlated strongly with calculations only when dispersion was considered. Such calculations favoured stacking by up to -27 kJ mol-1 in the gas phase, but it was weakly disfavoured in our solution-phase experiments (+0.5 to +4.6 kJ mol-1). Nonetheless, the propensity for stacking increased with contact area and in solvents with lower bulk polarisabilities that compete less for dispersion. Experimental stacking energies ranged from -0.02 kJ mol-1 Å-2 in CS2, to -0.05 kJ mol-1 Å-2 in CD2Cl2, but were dwarfed by the calculated gas-phase energy of -0.6 kJ mol-1 Å-2. The results underscore the challenge facing the exploitation of dispersion in solution. Solvent competition strongly but imperfectly cancels dispersion at molecular recognition interfaces, making the energetic benefits difficult to realise.

8.
Small ; : e2405507, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39076053

RESUMEN

Selective separation and conversion of furan-based biomass-derived compounds, which are closely related to biorefineries, is currently an important issue. To improve their performance, it is important to deepen the understanding of non-covalent interactions that act on the molecular recognition of furanic compounds on separation or catalyst matrices. Here, a new method is reported to comprehensively visualize such intermolecular interactions using a porous supramolecular crystalline probe with polar and non-polar binding sites within a low-symmetric nanochannel consisting of four isomeric PdII 3-macrocycles. Single-crystal X-ray diffraction analysis of the crystals including 5-hydroxymethylfurfural, furfural, furfuryl alcohol, or 2-acetylfuran reveals a variety of interactions involving their furan rings and polar substituents. It is also found that cooperative and competitive effects between guest and solvent molecules significantly change their recognition mode.

9.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38928142

RESUMEN

In this study, Fe3O4 nanoparticles (FeNPs) decorated with halogenated perylene diimides (PDIs) have been used for capturing VOCs (volatile organic compounds) through noncovalent binding. Concretely, we have used tetrachlorinated/brominated PDIs as well as a nonhalogenated PDI as a reference system. On the other hand, methanol, ethanol, propanol, and butanol were used as VOCs. Experimental studies along with theoretical calculations (the BP86-D3/def2-TZVPP level of theory) pointed to two possible and likely competitive binding modes (lone pair-π through the π-acidic surface of the PDI and a halogen bond via the σ-holes at the Cl/Br atoms). More in detail, thermal desorption (TD) experiments showed an increase in the VOC retention capacity upon increasing the length of the alkyl chain, suggesting a preference for the interaction with the PDI aromatic surface. In addition, the tetrachlorinated derivative showed larger VOC retention times compared to the tetrabrominated analog. These results were complemented by several state-of-the-art computational tools, such as the electrostatic surface potential analysis, the Quantum Theory of Atoms in Molecules (QTAIM), as well as the noncovalent interaction plot (NCIplot) visual index, which were helpful to rationalize the role of each interaction in the VOC···PDI recognition phenomena.


Asunto(s)
Alcoholes , Alcoholes/química , Perileno/química , Perileno/análogos & derivados , Compuestos Orgánicos Volátiles/química , Halógenos/química , Nanopartículas de Magnetita/química , Teoría Cuántica
10.
J Proteome Res ; 23(7): 2315-2322, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38913967

RESUMEN

Native top-down mass spectrometry (nTDMS) allows characterization of protein structure and noncovalent interactions with simultaneous sequence mapping and proteoform characterization. The majority of nTDMS studies utilize purified recombinant proteins, with significant challenges hindering application to endogenous systems. To perform native top-down proteomics (nTDP), where endogenous proteins from complex biological systems are analyzed by nTDMS, it is essential to separate proteins under nondenaturing conditions. However, it remains difficult to achieve high resolution with MS-compatible online chromatography while preserving protein tertiary structure and noncovalent interactions. Herein, we report the use of online mixed-bed ion exchange chromatography (IEC) to enable separation of endogenous proteins from complex mixtures under nondenaturing conditions, preserving noncovalent interactions for nTDP analysis. We have successfully detected large proteins (>146 kDa) and identified endogenous metal-binding and oligomeric protein complexes in human heart tissue lysate. The use of a mixed-bed stationary phase allowed retention and elution of proteins over a wide range of isoelectric points without altering the sample or mobile phase pH. Overall, our method provides a simple online IEC-MS platform that can effectively separate proteins from complex mixtures under nondenaturing conditions and preserve higher-order structure for nTDP applications.


Asunto(s)
Proteómica , Cromatografía por Intercambio Iónico/métodos , Humanos , Proteómica/métodos , Miocardio/química , Espectrometría de Masas/métodos , Mezclas Complejas/química , Proteínas/química , Proteínas/análisis , Proteínas/aislamiento & purificación
11.
Angew Chem Int Ed Engl ; : e202409507, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896433

RESUMEN

Modulating the arrangement of superstructures through noncovalent interactions has a significant impact on macroscopic shape and the expression of unique properties. Constructing π-interaction-driven hierarchical three-dimensional (3D) superstructures poses challenges on account of limited directional control and weak intermolecular interactions. Here we report the construction of a 3D diamondoid superstructure, named π-Diamond, employing a ditopic strained Z-shaped building block comprising a porphyrin unit as bow-limb double-strapped with two m-xylylene units as bowstrings. This superstructure, reminiscent of diamond's tetrahedral carbon composition, is composed of double-walled tetrahedron (DWT) driven solely by π-interactions. Hetero-π-stacking interactions between porphyrin and m-xylylene panels drive the assembly of four building blocks predominantly into a DWT, which undergoes extension to create an adamantane unit and eventually a diamondoid superstructure wherein each porphyrin panel is shared by two neighboring tetrahedra through hetero-π-stacking. π-Diamond exhibits a solid-state fluorescent quantum yield 44 times higher than that of tetraphenylporphyrin along with excellent photocatalytic performance. The precise 3D directionality of π-interactions, achieved through strained multipanel building blocks, revolutionizes the assembly of hierarchical 3D superstructures driven by π-interactions.

12.
Angew Chem Int Ed Engl ; : e202410815, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38925600

RESUMEN

Small-molecule receptors are increasingly employed to probe various functional groups for (bio)chemical analysis. However, differentiation of polyfunctional analogs sharing multiple functional groups remains challenging for conventional mono- and bidentate receptors because their insufficient number of binding sites limits interactions with the least reactive yet property-determining functional group. Herein, we introduce 6-thioguanine (TG) as a supramolecular receptor for unique tridentate receptor-analyte complexation, achieving ≥97 % identification accuracy among 16 polyfunctional analogs across three classes: glycerol derivatives, disubstituted propane, and vicinal diols. Crucially, we demonstrate distinct spectral changes induced by the tridentate interaction between TG's three anchoring points and all the analyte's functional groups, even the least reactive ones. Notably, hydrogen bond (H-bond) networks formed in the TG-analyte complexes demonstrate additive effects in binding strength originating from good bond linearity, cooperativity, and resonance, thus strengthening complexation events and amplifying the differences in spectral changes induced among analytes. It also enhances spectral consistency by selectively forming a sole configuration that is stronger than the respective analyte-analyte interaction. Finally, we achieve 95.4 % accuracy for multiplex identification of a mixture consisting of multiple polyfunctional analogs. We envisage that extension to other multidentate non-covalent interactions enables the development of interference-free small molecule-based sensors for various (bio)chemical analysis applications.

13.
Proc Natl Acad Sci U S A ; 121(27): e2407570121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38941275

RESUMEN

Although mechanically interlocked molecules (MIMs) display unique properties and functions associated with their intricate connectivity, limited assembly strategies are available for their synthesis. Herein, we presented a synergistic assembly strategy based on coordination and noncovalent interactions (π-π stacking and CH⋯π interactions) to selectively synthesize molecular closed three-link chains ([Formula: see text] links), highly entangled figure-eight knots ([Formula: see text] knots), trefoil knot ([Formula: see text] knot), and Borromean ring ([Formula: see text] link). [Formula: see text] links can be created by the strategic assembly of nonlinear multicurved ligands incorporating a furan or phenyl group with the long binuclear half-sandwich organometallic Cp*RhIII (Cp* = η5-pentamethylcyclopentadienyl) clip. However, utilizing much shorter binuclear Cp*RhIII units for union with the 2,6-naphthyl-containing ligand led to a [Formula: see text] knot because of the increased π-π stacking interactions between four consecutive stacked layers and CH⋯π interactions. Weakening such π-π stacking interactions resulted in a [Formula: see text] knot. The universality of this synergistic assembly strategy for building [Formula: see text] knots was verified by utilizing a 1,5-naphthyl-containing ligand. Quantitative conversion between the [Formula: see text] knot and the simple macrocycle species was accomplished by adjusting the concentrations monitored by NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS). Furthermore, increasing the stiff π-conjugated area of the binuclear unit afforded molecular Borromean ring, and this topology is a topological isomer of the [Formula: see text] link. These artificial metalla-links and metalla-knots were confirmed by single-crystal X-ray diffraction, NMR and ESI-MS. The results offer a potent strategy for building higher-order MIMs and emphasize the critical role that noncovalent interactions play in creating sophisticated topologies.

14.
J Comput Chem ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38944673

RESUMEN

Conformational ensemble generation and the search for the global minimum conformation are important problems in computational chemistry. In this work, a variant on the conformer-rotamer ensemble sampling tool (CREST) iterative metadynamics (iMTD) algorithm designed for determining structural ensembles and energetics of noncovalent clusters of flexible molecules is presented. We term this new algorithm a low-energy diversity-enhanced variant on CREST, or LEDE-CREST. As with CREST, the energies are evaluated using the semiempirical GFN2-xTB extended tight binding approach. The utility of the algorithm is highlighted by generating ensembles for a variety of noncovalent clusters of flexible or rigid monomers using both CREST and LEDE-CREST.

15.
Chemphyschem ; : e202400302, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842521

RESUMEN

Various aza-crowns with different sizes and substituents have been explored computationally as potential hosts for stabilizing the explosive guest xenon trioxide (XeO3) through σ-hole-mediated aerogen bonding interactions. Interestingly, aza-crowns demonstrate superior binding towards XeO3 compared to their oxygen and thio counterparts. However, unlike the latter cases, where the binding was found to be increasingly favorable with the increase in the size of the crowns, aza-crowns exhibit a variable size preference for XeO3, peaking with aza-15-crown-5, and reducing thereafter with increase in crown size.

16.
Chemistry ; : e202401576, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735852

RESUMEN

A yet-outstanding supramolecular chemistry challenge is isolation of novel varieties of stacked complexes with finely-tuned donor-acceptor bonding and optoelectronic properties, as herein reported for binary adducts comprising two different cyclic trinuclear complexes (CTC@CTC'). Most previous attempts focused only on 1-2 factors among metal/ligand/substituent combinations, resulting in heterobimetallic complexes. Instead, here we show that, when all 3 factors are carefully considered, a broadened variety of CTC@CTC' stacked pairs with intuitively-enhanced intertrimer coordinate-covalent bonding strength and ligand-ligand/metal-ligand dispersion are attained (dM-M' 2.868(2) Å; ΔE>50 kcal/mol, an order of magnitude higher than aurophilic/metallophilic interactions). Significantly, CTC@CTC' pairs remain intact/strongly-bound even in solution (Keq 4.67×105 L/mol via NMR/UV-vis titrations), and the gas phase (mass spectrometry revealing molecular peaks for the entire CTC@CTC' units in sublimed samples), rather than simple co-crystal formation. Photo-/electro-luminescence studies unravel metal-centered phosphorescence useful for novel all metal-organic light-emitting diodes (MOLEDs) optoelectronic device concepts. This work manifests systematic design of supramolecular bonding and multi-faceted spectral properties of pure metal-organic macrometallacyclic donor/acceptor (inorganic/inorganic) stacks with remarkably-rich optoelectronic properties akin to well-established organic/organic and organic/inorganic analogues.

17.
Chemistry ; 30(46): e202400921, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38706381

RESUMEN

The chemical space of chiral Brønsted acid catalysts is defined by quantity and complexity, reflecting the diverse synthetic challenges confronted and the innovative molecular designs introduced. Here, we detail how this successful outcome is a powerful demonstration of the benefits of utilizing both local structure searches and a comprehensive understanding of catalyst performance for effective and efficient exploration of Brønsted acid properties. In this concept article we provide an evolutionary overview of this field by summarizing the approaches to catalyst optimization, the resulting structures, and functions.

18.
Water Res ; 257: 121746, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38733966

RESUMEN

Sewage sludge is promising for the recovery and utilisation of nutrient components, but its complex nature hinders the release of these components. The combination of pH and thermal modifications shows promise for the release of nutrient components from sludge. However, comprehensive studies on the full spectrum of pH levels and corresponding mechanisms of pH-varying thermal modification are lacking. In this study, the main nutrient components, physicochemical properties, molecular structure, and noncovalent interactions of sludge were comprehensively investigated through pH-varying thermal modification (within a pH range of 2.0 to 12.0 under the same thermal condition). The experimental results showed that the release of main organics, particularly nitrogen (N)-containing organics, was well-fitted, with a tick-like function (R2: 0.74-0.96). The thermal protons exhibited a notable accumulative mutagenic effect on the N-containing organics release, while the thermal hydroxyl ions had a more direct effect, as revealed by the changes in multivalent metals and molecular structures with the protonation-deprotonation of carboxyl groups. The driving force for the release of N-containing organics was identified as the fluctuation of electrostatic interactions at the solid-liquid interface of the sludge. However, the release of phosphorus (P)-containing substances exhibited a contrasting response to that of N-containing substances with varying pH, likely because the reaction sites of thermal protons and thermal hydroxyl ions for P-containing substances were different. Moreover, high concentrations of thermal protons and hydroxyl ions collapsed the Lifshitz-van der Waals interactions of sludge, resulting in a decrease in viscoelasticity and binding strength. These propositions were further confirmed through statistical analyses of the main indicators of the main nutrient components, physicochemical properties, and noncovalent interactions of sludge. These findings can provide a basis for optimising characteristic-specific methods to recovery nutrient components (N/P) from sludge.


Asunto(s)
Nitrógeno , Fósforo , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Fósforo/química , Nitrógeno/química , Concentración de Iones de Hidrógeno , Eliminación de Residuos Líquidos/métodos
19.
J Hazard Mater ; 472: 134477, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38703682

RESUMEN

Interfacial challenges in unconventional oil extraction include heavy oil-water-solid multiphase separation and corrosion inhibition. Herein, a novel strategy based on interfacial hydrogen bonding reconstruction is proposed for constructing multifunctional interfacially active materials (MIAMs) to address multi-interfacial separation needs. A simple one-pot method is applied to successfully synthesize four different MIAM varieties, integrating site groups (-NH2, OSO, -COOH, and Si-O-Si) with multiple hydrogen bonds (HBs) into allyl polyether chains. The results indicate that all synthesized MIAMs excel in demulsification, detergency, and corrosion inhibition simultaneously, even at 25 °C. Their dehydration efficiency for different water-in-oil emulsions (even heavy oil emulsion) surpasses 99.9 % even at 16 °C, showing their excellent energy-saving potential for field applications. Furthermore, they demonstrate effective, nondestructive static cleaning (up to 86 %) of adhered oil from solid surfaces at 25 °C and provide corrosion inhibition effects (up to 92.09 %) on mild steel immersed in saturated brine. Mechanistic tests reveal that incorporating multiple HB sites in MIAMs dramatically enhances their effectiveness in interfacial separations. Based on these findings, an HB-dominated noncovalent interaction reconstruction strategy is tentatively proposed to develop advanced materials for low-carbon, efficient interfacial separations.

20.
Proteins ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747689

RESUMEN

Structures at serine-proline sites in proteins were analyzed using a combination of peptide synthesis with structural methods and bioinformatics analysis of the PDB. Dipeptides were synthesized with the proline derivative (2S,4S)-(4-iodophenyl)hydroxyproline [hyp(4-I-Ph)]. The crystal structure of Boc-Ser-hyp(4-I-Ph)-OMe had two molecules in the unit cell. One molecule exhibited cis-proline and a type VIa2 ß-turn (BcisD). The cis-proline conformation was stabilized by a C-H/O interaction between Pro C-Hα and the Ser side-chain oxygen. NMR data were consistent with stabilization of cis-proline by a C-H/O interaction in solution. The other crystallographically observed molecule had trans-Pro and both residues in the PPII conformation. Two conformations were observed in the crystal structure of Ac-Ser-hyp(4-I-Ph)-OMe, with Ser adopting PPII in one and the ß conformation in the other, each with Pro in the δ conformation and trans-Pro. Structures at Ser-Pro sequences were further examined via bioinformatics analysis of the PDB and via DFT calculations. Ser-Pro versus Ala-Pro sequences were compared to identify bases for Ser stabilization of local structures. C-H/O interactions between the Ser side-chain Oγ and Pro C-Hα were observed in 45% of structures with Ser-cis-Pro in the PDB, with nearly all Ser-cis-Pro structures adopting a type VI ß-turn. 53% of Ser-trans-Pro sequences exhibited main-chain COi•••HNi+3 or COi•••HNi+4 hydrogen bonds, with Ser as the i residue and Pro as the i + 1 residue. These structures were overwhelmingly either type I ß-turns or N-terminal capping motifs on α-helices or 310-helices. These results indicate that Ser-Pro sequences are particularly potent in favoring these structures. In each, Ser is in either the PPII or ß conformation, with the Ser Oγ capable of engaging in a hydrogen bond with the amide N-H of the i + 2 (type I ß-turn or 310-helix; Ser χ1 t) or i + 3 (α-helix; Ser χ1 g+) residue. Non-proline cis amide bonds can also be stabilized by C-H/O interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA