Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; 16(14): e202300043, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-36943787

RESUMEN

Redoxmers are organic active molecules storing electrochemical energy in nonaqueous redox flow batteries (NRFBs). Increasing the solubility of redoxmers is an important approach for increasing energy density of NRFBs as effective redoxmer concentration determines how much electricity can be stored in a given volume. Molecular engineering redoxmers towards liquid forms is regarded as one promising strategy as liquid redoxmers represent an extreme scenario where fluidity is maintained at maximum concentration using a minimum amount of supporting solvents. In this Perspective, recent examples of liquid redoxmers as well as their development strategy will be discussed.

2.
ACS Appl Mater Interfaces ; 14(25): 28834-28841, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35709493

RESUMEN

Redoxmers or redox-active organic materials, are one critical component for nonaqueous redox flow batteries (RFBs), which hold high promise in enabling the time domain of the grid. While tuning redox potentials of redoxmers is a very effective way to enhance energy densities of NRFBs, those improvements often accompany accelerated kinetics of the charged species, undermining stability and cycling performance. Herein, a strategy for designing redoxmers with simultaneous improvements in redox potential and stability is proposed. Specifically, the redoxmer 1,4-di-tert-butyl-2,5-bis(2,2,2-trifluoroethoxy)benzene (ANL-C46) is developed by incorporating fluorinated substitutions into the dialkoxybenzene-based platform. Compared to the non-fluorinated analogue, ANL-C46 demonstrates not only an increased (∼0.41 V) redox potential but also much enhanced stability (1.6 times) and cyclability (4 times) evidenced by electron paramagnetic resonance kinetic study, H-cell and flow cell cycling. In fact, the cycling performance of ANL-C46 is among the best of high potential (>1.0 V vs Ag/Ag+) redoxmers ever reported. Density functional theory calculations suggest that while the introduced fluorine substitutions elevate the redox potentials, they also help to depress the decomposition reactions of the charged redoxmers, affording excellent stability. The findings represent an interesting strategy for simultaneously improving energy density and stability, which could further prompt the development of high-performance redoxmers.

3.
Angew Chem Int Ed Engl ; 54(30): 8684-7, 2015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-25891480

RESUMEN

Nonaqueous redox flow batteries hold the promise of achieving higher energy density because of the broader voltage window than aqueous systems, but their current performance is limited by low redox material concentration, cell efficiency, cycling stability, and current density. We report a new nonaqueous all-organic flow battery based on high concentrations of redox materials, which shows significant, comprehensive improvement in flow battery performance. A mechanistic electron spin resonance study reveals that the choice of supporting electrolytes greatly affects the chemical stability of the charged radical species especially the negative side radical anion, which dominates the cycling stability of these flow cells. This finding not only increases our fundamental understanding of performance degradation in flow batteries using radical-based redox species, but also offers insights toward rational electrolyte optimization for improving the cycling stability of these flow batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA