Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202416856, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291894

RESUMEN

Flexible crystals with unique mechanical properties have presented enormous applications in optoelectronics, soft robotics and sensors. However, there have been no reports of low-temperature-resistant flexible crystals with second-order nonlinear optical properties (NLO). Here, we report the flexible chiral Schiff-base crystals capable of efficient second harmonic generation (SHG). Both enantiomers and racemic modifications of these crystals are mechanically flexible in two directions at both room temperature and at -196 °C, although their mechanical responses differ. The enantiomers display SHG with an intensity of up to 12 times that of potassium dihydrogenphosphate (KDP) when pumped at 980 nm, and they also have high laser-induced damage thresholds (LDT). Even when bent, the crystals retain strong second harmonic generation, although with a different intensity distribution depending on the polarization, compared to when they are straight. This work describes the first instance of flexible organic crystal with NLO properties and lays the foundation for the development of mechanically flexible organic NLO materials.

2.
Chemistry ; 29(72): e202303135, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-37867145

RESUMEN

Metals play an important role in the structure and functions of various proteins. The combination of metal ions and peptides have been emerging as an attractive field to create advanced structures and biomaterials. Here, we are reporting the anion-influenced, silver ion coordinated diverse networks of designed short tripeptide 310 -helices with terminal pyridyl groups. The short peptides adopted classical right-handed, left-handed and 310 EL -helical conformations in the presence of different silver salts. The peptides have displayed conformational flexibility to accommodate different sizes and interactions of anions to yield a variety of metal-coordinated networks. The complexes of metal ions and peptides have shown different porous networks, right- and left-handed helical polymers, transformation of helix into superhelix and 2 : 2 metal-peptide macrocycles. Further, the metal-peptide crystals with inherent dipoles of helical peptides gave striking second harmonic generation response. The optical energy upconversion from NIR to red and green light is demonstrated. Overall, we have shown the utilization of short 310 -helices for the construction of diverse metal-coordinated helical networks and notable non-linear optical effects.


Asunto(s)
Péptidos , Plata , Péptidos/química , Conformación Molecular , Aniones
3.
J Mol Model ; 29(10): 323, 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37740755

RESUMEN

CONTEXT: Three novel organic semiconductors (Fig. 1), which are molecule (a) and molecule (c) have the same wing unit molecules (b) and (c) have the same core unit were reported. Thus, the influence of wing units on solar cell device performance parameters such us the opto-electronics properties, non-linear optics (NLO), electronic properties, and natural bond orbitals (NBO) were calculated in order to evincing molecular structure-property relations. The all studied molecules would be promising materials for photovoltaic applications, but molecule (c) could be an excellent candidate for high efficiency organic solar cells with a small energy gap, a lowest ΔGreg, highest Voc, and LHE values. According to all these results, it is seen that the wing units of the molecules affect both the opto-electronic properties and NLO properties more than the core units. These theoretical calculations is expected to obtain new strategies to synthesize efficient materials for organic solar cell devices. METHOD: Density functional (DFT) and time-dependent density functional (TDDFT) theory simulations for the solar cell device performance parameters, non-linear optics, and natural bond analysis were performed using the Gaussian 09w software. The ground state properties of molecules have been studied with hybrid functional of Beckethree-Lee-Yang-Parr (B3LYP), and excited state properties have been calculated CAMB3LYP and our DFT calculations were performed using 6-31++G(d,p) basis set on fully optimized geometries.

4.
Materials (Basel) ; 16(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37374522

RESUMEN

As we approach the limits of semiconductor technology, the development of new materials and technologies for the new era in electronics is compelling. Among others, perovskite oxide hetero-structures are anticipated to be the best candidates. As in the case of semiconductors, the interface between two given materials can have, and often has, very different properties, compared to the corresponding bulk compounds. Perovskite oxides show spectacular interfacial properties due to the the rearrangement of charges, spins, orbitals and the lattice structure itself, at the interface. Lanthanum aluminate and Strontium titanate hetero-structures (LaAlO3/SrTiO3) can be regarded as a prototype of this wider class of interfaces. Both bulk compounds are plain and (relatively) simple wide-bandgap insulators. Despite this, a conductive two-dimensional electron gas (2DEG) is formed right at the interface when a LaAlO3 thickness of n≥4 unit cells is deposited on a SrTiO3 substrate. The 2DEG is quite thin, being confined in only one or at least very few mono-layers at the interface, on the SrTiO3 side. A very intense and long-lasting study was triggered by this surprising discovery. Many questions regarding the origin and characteristics of the two-dimensional electron gas have been (partially) addressed, others are still open. In particular, this includes the interfacial electronic band structure, the transverse plane spatial homogeneity of the samples and the ultrafast dynamics of the confined carriers. Among a very long list of experimental techniques which have been exploited to study these types of interfaces (ARPES, XPS, AFM, PFM, …and many others), optical Second Harmonic Generation (SHG) was found to be suitable for investigating these types of buried interfaces, thanks to its extreme and selective interface-only sensitivity. The SHG technique has made its contribution to the research in this field in a variety of different and important aspects. In this work we will give a bird's eye view of the currently available research on this topic and try to sketch out its future perspectives.

5.
ACS Nano ; 17(5): 4134-4179, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36821785

RESUMEN

Two-dimensional (2D) materials including graphene, transition metal dichalcogenides, black phosphorus, MXenes, and semimetals have attracted extensive and widespread interest over the past years for their many intriguing properties and phenomena, underlying physics, and great potential for applications. The vast library of 2D materials and their heterostructures provides a diverse range of electrical, photonic, mechanical, and chemical properties with boundless opportunities for photonics and plasmonic devices. The infrared (IR) regime, with wavelengths across 0.78 µm to 1000 µm, has particular technological significance in industrial, military, commercial, and medical settings while facing challenges especially in the limit of materials. Here, we present a comprehensive review of the varied approaches taken to leverage the properties of the 2D materials for IR applications in photodetection and sensing, light emission and modulation, surface plasmon and phonon polaritons, non-linear optics, and Smith-Purcell radiation, among others. The strategies examined include the growth and processing of 2D materials, the use of various 2D materials like semiconductors, semimetals, Weyl-semimetals and 2D heterostructures or mixed-dimensional hybrid structures, and the engineering of light-matter interactions through nanophotonics, metasurfaces, and 2D polaritons. Finally, we give an outlook on the challenges in realizing high-performance and ambient-stable devices and the prospects for future research and large-scale commercial applications.

6.
Genes (Basel) ; 13(11)2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36421802

RESUMEN

Normal and tumor regions within cancer tissue can be distinguished using various methods, such as histological analysis, tumor marker testing, X-ray imaging, or magnetic resonance imaging. Recently, new discrimination methods utilizing the Raman spectra of tissues have been developed and put into practical use. Because Raman spectral microscopy is a non-destructive and non-labeling method, it is potentially compatible for use in the operating room. In this review, we focus on the basics of Raman spectroscopy and Raman imaging in live cells and cell type discrimination, as these form the bases for current Raman scattering-based cancer diagnosis. We also review recent attempts to estimate the gene expression profile from the Raman spectrum of living cells using simple machine learning. Considering recent advances in machine learning techniques, we speculate that cancer type discrimination using Raman spectroscopy will be possible in the near future.


Asunto(s)
Neoplasias , Espectrometría Raman , Humanos , Espectrometría Raman/métodos , Microscopía/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/genética , Biomarcadores de Tumor , Expresión Génica
7.
Angew Chem Int Ed Engl ; 61(43): e202208875, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36043492

RESUMEN

Ge-based hybrid perovskite materials have demonstrated great potential for second harmonic generation (SHG) due to the geometry and lone-pair induced non-centrosymmetric structures. Here, we report a new family of hybrid 3D Ge-based bromide perovskites AGeBr3 , A=CH3 NH3 (MA), CH(NH2 )2 (FA), Cs and FAGe0.5 Sn0.5 Br3 , crystallizing in polar space groups. These compounds exhibit tunable SHG responses, where MAGeBr3 shows the strongest SHG intensity (5×potassium dihydrogen phosphate, KDP). Structural and theoretical analysis indicate the high SHG efficiency is attributed to the displacement of Ge2+ along [111] direction and the relatively strong interactions between lone pair electrons of Ge2+ and polar MA cations along the c-axis. This work provides new structural insights for designing and fine-tuning the SHG properties in hybrid metal halide materials.

8.
J Mol Model ; 27(2): 60, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33517540

RESUMEN

Polymer and molecular-based electronic materials incorporating heterocycles like thiophenes and pyrroles are attractive possibilities as substitutes for semimetal materials. Heterocyclic materials are heavily studied in this regard due to the large variations in possible substrates. Herein we evaluated four different 5,6-fused ring heterocycles to gain a better understanding of any favorable optical and electronic properties that were due to incorporation of certain moieties. The molecules chosen would highlight the effects that the central ring (pyridazine versus oxazine), aromatic substituent, and heterocyclic side group may have on electronic and optical properties. Computational analysis of these four molecules was done using density functional theory (B3LYP and PBEPBE) with 6-31G(d,p), 6-311 ++G(d,p), and cc-pVTZ basis sets. The constituent molecules were optimized, and calculations were done for the dipole moment, polarizability, first-order hyperpolarizability (ß), HOMO and LUMO orbitals, and a natural bonding order (NBO) analysis. These calculations allow for the study of charge density via electrostatic potential mapping and bonding orbitals. The results indicated that the pyridazine molecules presented here are more favorable than the oxazines for non-linear optical (NLO) applications. It is also noted that side ring substituents (thienyl and furyl) in the two pyridazines studied showed very little calculated differences. Finally, heterocyclic rings showed more favorable properties when incorporated as substituents for NLO applications over hydrocarbon aromatics. Graphical abstract.

9.
Biochim Biophys Acta Biomembr ; 1863(2): 183494, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33129783

RESUMEN

BACKGROUND: Organic fluorophores embedded in lipid bilayers can nowadays be described by a multiscale computational approach. Combining different length and time scales, a full characterization of the probe localization and optical properties led to novel insight into the effect of the environments. SCOPE OF REVIEW: Following an introduction on computational advancements, three relevant probes are reviewed that delineate how a multiscale approach can lead to novel insight into the probes' (non) linear optical properties. Attention is paid to the quality of the theoretical description of the optical techniques. MAJOR CONCLUSIONS: Computation can assess a priori novel probes' optical properties and guide the analysis and interpretation of experimental data in novel studies. The properties can be used to gain information on the phase and condition of the surrounding biological environment. GENERAL SIGNIFICANCE: Computation showed that a canonical view on some of the probes should be revisited and adapted.


Asunto(s)
Colorantes Fluorescentes/química , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Simulación de Dinámica Molecular
10.
Angew Chem Int Ed Engl ; 60(1): 486-492, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33001558

RESUMEN

Due to its unsurpassed capability to engage in various sp hybridizations or orbital mixings, carbon may contribute in expanding solid-state nitrogen chemistry by allowing for different complex anions, such as the known NCN2- carbodiimide unit, the so far unknown CN3 5- guanidinate anion, and the likewise unknown CN4 8- ortho-nitrido carbonate (onc) entity. Because the latter two complex anions have never been observed before, we have chemically designed them using first-principles structural searches, and we here predict the first hydrogen-free guanidinates TCN3 (T=V, Nb, Ta) and ortho-nitrido carbonates T'2 CN4 (T'=Ti, Zr, Hf) being mechanically stable at normal pressure; the latter should coexist as solid solutions with the stoichiometrically identical nitride carbodiimides and nitride guanidinates. We also suggest favorable exothermic reactions as useful signposts for eventual synthesis, and we trust that the decay of the novel compounds is unlikely due to presumably large kinetic activation barriers (C-N bond breaking) and quite substantial Madelung energies stabilizing the highly charged complex anions. While chemical-bonding analysis reveals the novel CN4 8- to be more covalent compared to NCN2- and CN3 5- within related compounds, further electronic-structure data of onc phases hint at their physicochemical potential in terms of photoelectrochemical water splitting and nonlinear optics.

11.
Nanomaterials (Basel) ; 10(12)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266222

RESUMEN

We present a cost- and time-efficient method for the controlled preparation of single phase La(IO3)3 nanoparticles via a simple soft-chemical route, which takes a matter of hours, thereby providing an alternative to the common hydrothermal method, which takes days. Nanoparticles of pure α-La(IO3)3 and pure δ-La(IO3)3 were synthesised via the new method depending on the source of iodate ions, thereby demonstrating the versatility of the synthesis route. The crystal structure, nanoparticle size-dispersal, and chemical composition were characterised via angle- and energy-dispersive powder X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy.

12.
Chempluschem ; 85(7): 1549-1558, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32706173

RESUMEN

A series of new push-pull chromophores based on a combined cyclopenta[c]thiophene-4,6-dione (ThDione) acceptor, N,N-dimethylaniline, N-piperidinylthiophene or ferrocene donors, and ethylene or buta-1,3-dienylene π-linkers has been designed and synthesized. Utilizing one or two ThDione acceptors afforded linear or branched push-pull molecules. Experimental and theoretical study of their fundamental properties revealed thermal robustness up to 260 °C, a electrochemical/optical HOMO-LUMO gap that is tunable within the range of 1.47-2.19/1.99-2.39 eV, and thorough elucidation of structure-property relationships. Compared to currently available portfolio of heterocyclic electron-withdrawing units, ThDione proved to be a powerful and versatile acceptor unit. It imparts significant intramolecular charge transfer and polarizes the π-system, which results in enhanced (non)linear optical response.

13.
Chemistry ; 26(47): 10653-10675, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32118325

RESUMEN

Non-planar conjugated organic molecules (NPCOMs) contain π-conjugation across their length and also exhibit asymmetry in their conformation. In other words, certain molecular fragments in NPCOMs are either twisted or curved out of planarity. This conformational asymmetry in NPCOMs leads to non-uniform charge-distribution across the molecule, with important photophysical and electronic consequences such as altered thermodynamic stability, chemical reactivity, as well as materials properties. Majorly, NPCOMs can be classified as having either Fused or Rotatable architectures. NPCOMs have been the focus of significant scientific attention in the recent past due to their exciting photophysical behavior that includes intramolecular charge-transfer (ICT), thermally activated delayed fluorescence (TADF) and long-lived charge-separated states. In addition, they also have many useful materials characteristics such as biradical character, semi-conductivity, dynamic conformations, and mechanochromism. As a result, rational design of NPCOMs and mapping their structure-property correlations has become imperative. Researchers have executed conformational changes in NPCOMs through a variety of external stimuli such as pH, temperature, anions-cations, solvent, electric potential, and mechanical force in order to tailor their photophysical, optoelectronic and magnetic properties. Converging to these points, this review highlights the lucrative electronic features, photophysical traits and upcoming applications of NPCOMs by a selective survey of the recent scientific literature.

14.
Materials (Basel) ; 13(6)2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32183131

RESUMEN

Water is the most prominent solvent. The unique properties of water are rooted in the dynamical hydrogen-bonded network. While TeraHertz (THz) radiation can probe directly the collective molecular network, several open issues remain about the interpretation of these highly anharmonic, coupled bands. In order to address this problem, we need intense THz radiation able to drive the liquid into the nonlinear response regime. Firstly, in this study, we summarize the available brilliant THz sources and compare their emission properties. Secondly, we characterize the THz emission by Gallium Phosphide (GaP), 2-{3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene}malononitrile (OH1), and 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS) crystals pumped by an amplified near-infrared (NIR) laser with tunable wavelength. We found that both OH1 as well as DSTMS could convert NIR laser radiation between 1200 and 2500 nm into THz radiation with high efficiency (> 2 × 10-4), resulting in THz peak fields exceeding 0.1 MV/cm for modest pump excitation (~ mJ/cm2). DSTMS emits the broadest spectrum, covering the entire bandwidth of our detector from ca. 0.5 to ~7 THz, also at a laser wavelength of 2100 nm. Future improvements will require handling the photothermal damage of these delicate organic crystals, and increasing the THz frequency.

15.
Expert Rev Mol Diagn ; 20(1): 99-115, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32013616

RESUMEN

Introduction: Currently, intensely developing of linear and non-linear optical methods for cancer detection provides a valuable tool to improve sensitivity and specificity. One of the main reasons for insufficient progress in cancer diagnostics is related to the fact that most cancer types are not only heterogeneous in their genetic composition but also reside in varying microenvironments and interact with different cell types. Until now, no technology has been fully proven for effective detecting of invasive cancer, which infiltrating the extracellular matrix.Areas covered: This review investigates the current status of Raman spectroscopy and Raman imaging for brain and breast cancer diagnostics. Moreover, the review provides a comprehensive overview of the applicability of atomic force microscopy (AFM), linear and non-linear optics in cancer research as a gateway to tumor cell identity.Expert commentary: A combination of linear and non-linear optics, particularly Raman-driven methods, has many additional advantages to identify alterations in cancer cells that are crucial for their proliferation and that distinguish them from normal cells.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias de la Mama/diagnóstico , Espectrometría Raman/métodos , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Epigénesis Genética , Femenino , Humanos , Masculino , Técnicas de Diagnóstico Molecular/métodos , Terapia Molecular Dirigida/métodos
16.
Polymers (Basel) ; 12(1)2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31968552

RESUMEN

Excellent quadratic non-linear optical (ONL-2) properties of the poly(2,5-bis(but-2-ynyloxy) benzoate, containing a polar diacetylene as a chromophore, were found. According with the Maker fringes method, oriented polymer films showing an order parameter of ∼0.23 can display outstanding and stable Second Harmonic Generation (SHG) effects under off-resonant conditions (SHG-532 nm). Also, the macroscopic non-linear optical (NLO)-coefficients were evaluated under the rod-like molecular approximation, obtaining: χzzz(2) and χzxx(2) in the order of 280 ± 10 and 100 ± 10 pm V-1, respectively. The mechanical and chemical properties, in addition to the large ONL-2 coefficients exhibited by this polymer, make it a promising organic material in the development of optoelectronic/photonic devices.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117698, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-31707020

RESUMEN

The effect of adsorption of silver atoms to the nonlinear optical (NLO) active compound N,N' dimethyl urea ninhydrin (NDUN), has been analysed by computational methods. Single, double or triple silver atoms are added to the NDUN structure at an appropriate site and the geometry optimization, vibrational spectral and the natural bond orbital analyses, and hyperpolarizability calculations are done using B3LYP functional with LANL2DZ basis set. A comparison of IR spectra of the Ag-adsorbed NDUN (NDUN-Ag) is made to study the effect of the addition of silver atoms in the vibrational motions of the molecule. The NBO analysis gives an account of the interactions between atoms of the chosen molecule. The effect on NLO properties of NDUN is characterized by the polarizability, and the first and the second hyperpolarizability calculations.

18.
Chemistry ; 26(15): 3404-3410, 2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-31853985

RESUMEN

Two-photon absorption (TPA) dyes with intense fluorescence can be used to detect small chemical species and as sensors and bioimaging probes for specific analytes. Various TPA dyes responding to a number of external stimuli have been reported. Among them, biologically important anionic species have not been used as agents to control TPA properties because their direct electronic influences on the transition dipole moments of dyes are typically small. In this study, dipyrrolyldiketone BF2 complexes substituted with π-extended units exhibited efficient TPA properties that could be regulated by conformation changes induced by anion binding. The TPA intensity decreased to 1/5 of the original intensity upon anion binding, which was much larger than that observed for one-photon absorption. Anion detection was achieved by a change in the emission intensity of spatially resolved spots of two-photon-excited fluorescence (TPEF) in the sample. Experimental and theoretical studies were performed to understand the mechanism of the TPA property control and showed that the drastic changes in the transition dipole moments upon conformation changes between the straight and bending forms of the π-electronic systems caused the TPA and TPEF intensities drop.

19.
Materials (Basel) ; 12(5)2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30871058

RESUMEN

We report on the recent scientific research contribution of non-linear optics based on Sum-Frequency Generation (SFG) spectroscopy as a surface probe of the plasmonic properties of materials. In this review, we present a general introduction to the fundamentals of SFG spectroscopy, a well-established optical surface probe used in various domains of physical chemistry, when applied to plasmonic materials. The interest of using SFG spectroscopy as a complementary tool to surface-enhanced Raman spectroscopy in order to probe the surface chemistry of metallic nanoparticles is illustrated by taking advantage of the optical amplification induced by the coupling to the localized surface plasmon resonance. A short review of the first developments of SFG applications in nanomaterials is presented to span the previous emergent literature on the subject. Afterwards, the emphasis is put on the recent developments and applications of the technique over the five last years in order to illustrate that SFG spectroscopy coupled to plasmonic nanomaterials is now mature enough to be considered a promising research field of non-linear plasmonics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA