Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 573
Filtrar
1.
Cells ; 13(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273031

RESUMEN

DNA double strand breaks (DSBs) are critical for the efficacy of radiotherapy as they lead to cell death if not repaired. DSBs caused by ionizing radiation (IR) initiate histone modifications and accumulate DNA repair proteins, including 53BP1, which forms distinct foci at damage sites and serves as a marker for DSBs. DSB repair primarily occurs through Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR). NHEJ directly ligates DNA ends, employing proteins such as DNA-PKcs, while HR, involving proteins such as Rad54, uses a sister chromatid template for accurate repair and functions in the S and G2 phases of the cell cycle. Both pathways are crucial, as illustrated by the IR sensitivity in cells lacking DNA-PKcs or Rad54. We generated mouse embryonic stem (mES) cells which are knockout (KO) for DNA-PKcs and Rad54 to explore the combined role of HR and NHEJ in DSB repair. We found that cells lacking both DNA-PKcs and Rad54 are hypersensitive to X-ray radiation, coinciding with impaired 53BP1 focus resolution and a more persistent G2 phase cell cycle block. Additionally, mES cells deficient in DNA-PKcs or both DNA-PKcs and Rad54 exhibit an increased nuclear size approximately 18-24 h post-irradiation. To further explore the role of Rad54 in the absence of DNA-PKcs, we generated DNA-PKcs KO mES cells expressing GFP-tagged wild-type (WT) or ATPase-defective Rad54 to track the Rad54 foci over time post-irradiation. Cells lacking DNA-PKcs and expressing ATPase-defective Rad54 exhibited a similar phenotypic response to IR as those lacking both DNA-PKcs and Rad54. Despite a strong G2 phase arrest, live-cell imaging showed these cells eventually progress through mitosis, forming micronuclei. Additionally, mES cells lacking DNA-PKcs showed increased Rad54 foci over time post-irradiation, indicating an enhanced reliance on HR for DSB repair without DNA-PKcs. Our findings underscore the essential roles of HR and NHEJ in maintaining genomic stability post-IR in mES cells. The interplay between these pathways is crucial for effective DSB repair and cell cycle progression, highlighting potential targets for enhancing radiotherapy outcomes.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Recombinación Homóloga , Células Madre Embrionarias de Ratones , Radiación Ionizante , Animales , Ratones , Reparación del ADN por Unión de Extremidades/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/efectos de la radiación , Células Madre Embrionarias de Ratones/citología , Recombinación Homóloga/efectos de la radiación , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , ADN Helicasas/metabolismo , ADN Helicasas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteínas Nucleares
2.
Transl Oncol ; 50: 102119, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39270525

RESUMEN

While poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have improved the prognosis of ovarian high-grade serous carcinoma (HGSC) tumors that are homologous recombination (HR) deficient (HRD), new therapeutic strategies are needed for tumors that are HR proficient (HRP) because they demonstrate greater resistance to current treatments and thus have poorer clinical outcomes. Additionally, clinical precautionary statements regarding potential risks associated with PARPi, such as myelodysplastic syndrome, highlight the need for combinatorial approaches that can lessen the dose and duration of PARPi treatment to reduce toxicities. Here, we evaluated DNA double-strand damage repair pathways in HRD and HRP ovarian cancer cell lines and found that in HRD cell lines, PARPi therapy reduced non-homologous end joining (NHEJ)-mediated repair, specifically due to decreased theta-mediated end-joining. The combination of PARPi with ATM serine/threonine kinase inhibitor (ATMi) suppressed both NHEJ and HR pathways in HRD and HRP cell lines, with synergistic increases in apoptosis and decreases in cell viability and colony formation. Interestingly, PARPi plus ATMi also decreased NF-κB p65 phosphorylation, which was not observed when PARPi was combined with inhibition of the ATR kinase (ATRi). These findings indicate that PARPi plus ATMi is a promising strategy for HGSC independent of underlying tumor HR status.

3.
J Insect Sci ; 24(4)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39162172

RESUMEN

CRISPR/Cas9 manipulations are possible in many insects and ever expanding. Nonetheless, success in one species and techniques developed for it are not necessarily applicable to other species. As such, the development and expansion of CRISPR-based (clustered regularly interspaced short palindromic repeats) genome-editing tools and methodologies are dependent upon direct experimentation. One useful technique is Cas9-dependent homologous recombination, which is a critical tool for studying gene function but also for developing pest related applications like gene drive. Here, we report our attempts to induce Cas9 homology directed repair (HDR) and subsequent gene drive in Tribolium castaneum (Herbst; Insecta: Coleoptera: Tenebrionidae). Utilizing constructs containing 1 or 2 target gRNAs in combination with Cas9 under 2 different promoters and corresponding homology arms, we found a high incidence of CRISPR/Cas9 induced mutations but no evidence of homologous recombination. Even though the generated constructs provide new resources for CRISPR/Cas9 modification of the Tribolium genome, our results suggest that additional modifications and increased sample sizes will be necessary to increase the potential and detection for HDR of the Tribolium genome.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Tribolium , Tribolium/genética , Animales , Edición Génica/métodos , Reparación del ADN por Recombinación , Tecnología de Genética Dirigida/métodos
4.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39201738

RESUMEN

Metabolic changes involving the tricarboxylic acid (TCA) cycle have been linked to different non-metabolic cell processes. Among them, apart from cancer and immunity, emerges the DNA damage response (DDR) and specifically DNA damage repair. The oncometabolites succinate, fumarate and 2-hydroxyglutarate (2HG) increase reactive oxygen species levels and create pseudohypoxia conditions that induce DNA damage and/or inhibit DNA repair. Additionally, by influencing DDR modulation, they establish direct relationships with DNA repair on at least four different pathways. The AlkB pathway deals with the removal of N-alkylation DNA and RNA damage that is inhibited by fumarate and 2HG. The MGMT pathway acts in the removal of O-alkylation DNA damage, and it is inhibited by the silencing of the MGMT gene promoter by 2HG and succinate. The other two pathways deal with the repair of double-strand breaks (DSBs) but with opposite effects: the FH pathway, which uses fumarate to help with the repair of this damage, and the chromatin remodeling pathway, in which oncometabolites inhibit its repair by impairing the homologous recombination repair (HRR) system. Since oncometabolites inhibit DNA repair, their removal from tumor cells will not always generate a positive response in cancer therapy. In fact, their presence contributes to longer survival and/or sensitization against tumor therapy in some cancer patients.


Asunto(s)
Ciclo del Ácido Cítrico , Reparación del ADN , Resistencia a Antineoplásicos , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Daño del ADN , Animales
5.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119815, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151475

RESUMEN

The Ku heterodimer (Ku70/Ku80) is central to the non-homologous end-joining (NHEJ) pathway. Ku binds to the broken DNA ends and promotes the assembly of the DNA repair complex. The N-terminal Ku70 von Willebrand A (vWA) domain is known to mediate protein-protein interactions important for the repair process. In particular, the D192 and D195 residues within helix 5 of the Ku70 vWA domain were shown to be essential for NHEJ function, although the precise role of these residues was not identified. Here, we set up a miniTurbo screening system to identify Ku70 D192/D195 residue-specific interactors in a conditional, human Ku70-knockout cell line in response to DNA damage. Using fusion protein constructs of Ku70 wild-type and mutant (D192A/D195R) with miniTurbo, we identified a number of candidate proximal interactors in response to DNA damage treatment, including DNA Ligase IV (LigIV), a known and essential NHEJ complex member. Interestingly, LigIV was enriched in our wildtype screen but not the Ku70 D192A/D195R screen, suggesting its interaction is disrupted by the mutation. Validation experiments demonstrated that the DNA damage-induced interaction between Ku70 and LigIV was disrupted by the Ku70 D192A/D195R mutations. Our findings provide greater detail about the interaction surface between the Ku70 vWA domain and LigIV and offer strong evidence that the D192 and D195 residues are important for NHEJ completion through an interaction with LigIV. Altogether, this work reveals novel potential proximal interactors of Ku in response to DNA damage and identifies Ku70 D192/D195 residues as essential for LigIV interaction with Ku during NHEJ.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN Ligasa (ATP) , Proteínas de Unión al ADN , Autoantígeno Ku , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Humanos , Reparación del ADN por Unión de Extremidades/genética , ADN Ligasa (ATP)/metabolismo , ADN Ligasa (ATP)/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/química , Daño del ADN , Unión Proteica , Dominios Proteicos , Factor de von Willebrand/metabolismo , Factor de von Willebrand/genética , Factor de von Willebrand/química
6.
Clin Epigenetics ; 16(1): 119, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192299

RESUMEN

BACKGROUND: Cardiac fibrosis is the hallmark of all forms of chronic heart disease. Activation and proliferation of cardiac fibroblasts are the prime mediators of cardiac fibrosis. Existing studies show that ROS and inflammatory cytokines produced during fibrosis not only signal proliferative stimuli but also contribute to DNA damage. Therefore, as a prerequisite to maintain sustained proliferation in fibroblasts, activation of distinct DNA repair mechanism is essential. RESULT: In this study, we report that TET3, a DNA demethylating enzyme, which has been shown to be reduced in cardiac fibrosis and to exert antifibrotic effects does so not only through its demethylating activity but also through maintaining genomic integrity by facilitating error-free homologous recombination (HR) repair of DNA damage. Using both in vitro and in vivo models of cardiac fibrosis as well as data from human heart tissue, we demonstrate that the loss of TET3 in cardiac fibroblasts leads to spontaneous DNA damage and in the presence of TGF-ß to a shift from HR to the fast but more error-prone non-homologous end joining repair pathway. This shift contributes to increased fibroblast proliferation in a fibrotic environment. In vitro experiments showed TET3's recruitment to H2O2-induced DNA double-strand breaks (DSBs) in mouse cardiac fibroblasts, promoting HR repair. Overexpressing TET3 counteracted TGF-ß-induced fibroblast proliferation and restored HR repair efficiency. Extending these findings to human cardiac fibrosis, we confirmed TET3 expression loss in fibrotic hearts and identified a negative correlation between TET3 levels, fibrosis markers, and DNA repair pathway alteration. CONCLUSION: Collectively, our findings demonstrate TET3's pivotal role in modulating DDR and fibroblast proliferation in cardiac fibrosis and further highlight TET3 as a potential therapeutic target.


Asunto(s)
Dioxigenasas , Fibroblastos , Fibrosis , Animales , Fibrosis/genética , Dioxigenasas/genética , Dioxigenasas/metabolismo , Ratones , Humanos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Daño del ADN/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Reparación del ADN/efectos de los fármacos , Miocardio/patología , Miocardio/metabolismo , Masculino , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo
7.
Fungal Biol Biotechnol ; 11(1): 10, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103967

RESUMEN

Non-homologous end joining (NHEJ) and homology-directed repair (HDR) are two mechanisms in filamentous fungi to repair DNA damages. NHEJ is the dominant response pathway to rapidly join DNA double-strand breaks, but often leads to insertions or deletions. On the other hand, HDR is more precise and utilizes a homologous DNA template to restore the damaged sequence. Both types are exploited in genetic engineering approaches ranging from knock-out mutations to precise sequence modifications.In this study, we evaluated the efficiency of an HDR based gene integration system designed for the pyrG locus of Aspergillus niger. While gene integration was achieved at a rate of 91.4%, we also discovered a mixed-type repair (MTR) mechanism with simultaneous repair of a Cas9-mediated double-strand break by both NHEJ and HDR. In 20.3% of the analyzed transformants the donor DNA was integrated by NHEJ at the 3' end and by HDR at the 5' end of the double-strand break. Furthermore, sequencing of the locus revealed different DNA repair mechanisms at the site of the NHEJ event.Together, the results support the applicability of the genome integration system and a novel DNA repair type with implication on the diversity of genetic modifications in filamentous fungi.

8.
Angew Chem Int Ed Engl ; : e202409012, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115450

RESUMEN

Despite the great advances in discovering cyclic peptides against protein targets, their reduced aqueous solubility, cell permeability, and activity of the cyclic peptide restrict its utilization in advanced biological research and therapeutic applications. Here we report on a novel approach of structural alternation of the exocyclic and linker parts that led to a new derivative with significantly improved cell activity allowing us to dissect its mode of action in detail. We have identified an effective cyclic peptide (CP7) that induces approximately a 9-fold increase in DNA damage accumulation and a remarkable increase in apoptotic cancer cell death compared to the reported molecule. Notably, treating cells with CP7 leads to a dramatic decrease in the efficiency of non-homologous end joining (NHEJ) repair of DNA double-strand breaks (DSBs), which is accompanied by an increase in homologous recombination (HR) repair. Interestingly, treating BRCA1-deficient cells with CP7 restores HR integrity, which is accompanied by increased resistance to CP7. Additionally, CP7 treatment increases the sensitivity of cancer cells to ionizing radiation. Collectively, our findings demonstrate that CP7 is a selective inhibitor of NHEJ, offering a potential strategy to enhance the effectiveness of radiation therapy.

9.
DNA Repair (Amst) ; 142: 103737, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128395

RESUMEN

The DNA dependent protein kinase (DNA-PK) initiates non-homologous recombination (NHEJ), the predominate DNA double-strand break (DSBR) pathway in higher vertebrates. It has been known for decades that the enzymatic activity of DNA-PK [that requires its three component polypeptides, Ku70, Ku80 (that comprise the DNA-end binding Ku heterodimer), and the catalytic subunit (DNA-PKcs)] is present in humans at 10-50 times the level observed in other mammals. Here, we show that the high level of DNA-PKcs protein expression appears evolutionarily in mammals between prosimians and higher primates. Moreover, the RNAs encoding the three component polypeptides of DNA-PK are present at similarly high levels in hominids, new-, and old-world monkeys, but expression of these RNAs in prosimians is ∼5-50 fold less, analogous to the levels observed in other non-primate species. This is reminiscent of the appearance of Alu repeats in primate genomes -- abundant in higher primates, but present at much lower density in prosimians. Alu repeats are well-known for their capacity to promote non-allelic homologous recombination (NAHR) a process known to be inhibited by DNA-PK. Nanopore sequence analyses of cultured cells proficient or deficient in DNA-PK revealed an increase of inter-chromosomal translocations caused by NAHR. Although the high levels of DNA-PK in primates may have many functions, we posit that high levels of DNA-PK may function to restrain deleterious NAHR events between Alu elements.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Proteína Quinasa Activada por ADN , Primates , Animales , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Humanos , Primates/genética , Primates/metabolismo , Roturas del ADN de Doble Cadena , ARN/metabolismo , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Evolución Molecular , Mamíferos/metabolismo , Mamíferos/genética
10.
Plant J ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052360

RESUMEN

With the advancement of CRISPR technologies, a comprehensive understanding of repair mechanisms following double-strand break (DSB) formation is important for improving the precision and efficiency of genetic modifications. In plant genetics, two Cas nucleases are widely used, i.e. Cas9 and Cas12a, which differ with respect to PAM sequence composition, position of the DSB relative to the PAM, and DSB-end configuration (blunt vs. staggered). The latter difference has led to speculations about different options for repair and recombination. Here, we provide detailed repair profiles for LbCas12a in Arabidopsis thaliana, using identical experimental settings previously reported for Cas9-induced DSBs, thus allowing for a quantitative comparison of both nucleases. For both enzymes, non-homologous end-joining (NHEJ) produces 70% of mutations, whereas polymerase theta-mediated end-joining (TMEJ) generates 30%, indicating that DSB-end configuration does not dictate repair pathway choice. Relevant for genome engineering approaches aimed at integrating exogenous DNA, we found that Cas12a similarly stimulates the integration of T-DNA molecules as does Cas9. Long-read sequencing of both Cas9 and Cas12a repair outcomes further revealed a previously underappreciated degree of DNA loss upon TMEJ. The most notable disparity between Cas9 and Cas12a repair profiles is caused by how NHEJ acts on DSB ends with short overhangs: non-symmetric Cas9 cleavage produce 1 bp insertions, which we here show to depend on polymerase Lambda, whereas staggered Cas12a DSBs are not subjected to fill-in synthesis. We conclude that Cas9 and Cas12a are equally effective for genome engineering purposes, offering flexibility in nuclease choice based on the availability of compatible PAM sequences.

11.
J Cancer ; 15(13): 4345-4359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947402

RESUMEN

Background: Tumor hypoxia has been frequently detected in nasopharyngeal carcinoma (NPC) and is intently associated with therapeutic resistance. The aim of the study is to establish a clonogenically stable hypoxia-inducible dual reporter model and apply it to investigate the effect of tumor hypoxia on DNA double strand break (DSB) and synergistic effect of irradiation in combination with chemotherapy or targeted therapy. Methods: The plasmid vector consisting of hypoxia response elements to regulate HSV1-TK and GFP genes, was constructed and stably transfected into human NPC cells. The expected clone was identified and validated by in vivo and in vitro assay. DSB repair was measured by γH2AX foci formation. Tumor growth delay assay and spatial biodistribution of various biomarkers was designed to investigate the anti-tumor effect. Results: The system has the propensity of high expression of reporter genes under hypoxia and low to no expression under normoxia. Intratumoral biodistributions of GFP and classic hypoxic biomarkers were identical in poor-perfused region. Upon equilibration with 10% O2, the xenografts showed higher expression of hypoxic biomarkers. Cisplatin radiosensitized SUNE-1/HRE cells under hypoxia by suppressing DSB repair while the addition of PI3K/mTOR inhibitor further enhanced the anti-tumoral therapeutic efficacy. Combination of IR, DDP and NVP-BEZ235 exhibited most effective anti-tumor response in vivo. These observations underline the importance of dual reporter model for imaging tumor hypoxia in therapeutic study. Conclusions: Our preclinical model enables the investigation of heterogeneous tumor hypoxic regions in xenograft tissues and explores the treatment efficacy of combinations of various therapeutic approaches to overcome hypoxia.

12.
Entropy (Basel) ; 26(6)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38920510

RESUMEN

The process of end-joining during nonhomologous repair of DNA double-strand breaks (DSBs) after radiation damage is considered. Experimental evidence has revealed that the dynamics of DSB ends exhibit subdiffusive motion rather than simple diffusion with rare directional movement. Traditional models often overlook the rare long-range directed motion. To address this limitation, we present a heterogeneous anomalous diffusion model consisting of subdiffusive fractional Brownian motion interchanged with short periods of long-range movement. Our model sheds light on the underlying mechanisms of heterogeneous diffusion in DSB repair and could be used to quantify the DSB dynamics on a time scale inaccessible to single particle tracking analysis. The model predicts that the long-range movement of DSB ends is responsible for the misrepair of DSBs in the form of dicentric chromosome lesions.

13.
Sci China Life Sci ; 67(6): 1089-1105, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38842635

RESUMEN

Histone H3 Lys36 (H3K36) methylation and its associated modifiers are crucial for DNA double-strand break (DSB) repair, but the mechanism governing whether and how different H3K36 methylation forms impact repair pathways is unclear. Here, we unveil the distinct roles of H3K36 dimethylation (H3K36me2) and H3K36 trimethylation (H3K36me3) in DSB repair via non-homologous end joining (NHEJ) or homologous recombination (HR). Yeast cells lacking H3K36me2 or H3K36me3 exhibit reduced NHEJ or HR efficiency. yKu70 and Rfa1 bind H3K36me2- or H3K36me3-modified peptides and chromatin, respectively. Disrupting these interactions impairs yKu70 and Rfa1 recruitment to damaged H3K36me2- or H3K36me3-rich loci, increasing DNA damage sensitivity and decreasing repair efficiency. Conversely, H3K36me2-enriched intergenic regions and H3K36me3-enriched gene bodies independently recruit yKu70 or Rfa1 under DSB stress. Importantly, human KU70 and RPA1, the homologs of yKu70 and Rfa1, exclusively associate with H3K36me2 and H3K36me3 in a conserved manner. These findings provide valuable insights into how H3K36me2 and H3K36me3 regulate distinct DSB repair pathways, highlighting H3K36 methylation as a critical element in the choice of DSB repair pathway.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Histonas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Humanos , Metilación , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Proteína de Replicación A/metabolismo , Proteína de Replicación A/genética , Recombinación Homóloga , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Reparación del ADN , Cromatina/metabolismo , Cromatina/genética
14.
Cancer Diagn Progn ; 4(3): 231-238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707718

RESUMEN

Background/Aim: Ewing sarcoma is an aggressive mesenchymal malignancy commonly affecting children and young adolescents. The molecular basis of this neoplasia is well reported with the formation of the EWSR1/FLI1 fusion gene being the most common genetic finding. However, this fusion gene has not been targeted therapeutically nor is being used as a prognostic marker. Its relevance regarding the molecular steps leading to Ewing sarcoma genesis are yet to be defined. The generation of the oncogenic EWSR1/FLI1 fusion gene, can be attributed to the simultaneous introduction of two DNA double-strand breaks (DSBs). The scope of this study is to detect any association between DNA repair deficiency and the clinicopathological aspects of Ewing's sarcoma disease. Patients and Methods: We have conducted an expression analysis of 35 patients diagnosed with Ewing sarcoma concerning the genes involved in non-homologous end joining (NHEJ) and homologous recombination (HR) repair pathways. We have analyzed the expression levels of 6 genes involved in NHEJ (XRCC4, XRCC5, XRCC6, POLλ, POLµ) and 9 genes involved in HR (RAD51, RAD52, RAD54, BRCA1, BRCA2, FANCC, FANCD, DNTM1, BRIT1) using real time PCR. Age, sex, location of primary tumor, tumor size, KI67, mitotic count, invasion of adjacent tissues and treatment were the clinicopathological parameters included in the statistical analysis. Results: Our results show that both these DNA repair pathways are deregulated in Ewing sarcoma. In addition, low expression of the xrcc4 gene has been associated with better overall survival probability (p=0.032). Conclusion: Our results, even though retrospective and in a small number of patients, highlight the importance of DSBs repair and propose a potential therapeutic target for this type of sarcoma.

15.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38612901

RESUMEN

We explore the possibility that defects in genes associated with the response and repair of DNA double strand breaks predispose oral potentially malignant disorders (OPMD) to undergo malignant transformation to oral squamous cell carcinoma (OSCC). Defects in the homologous recombination/Fanconi anemia (HR/FA), but not in the non-homologous end joining, causes the DNA repair pathway to appear to be consistent with features of familial conditions that are predisposed to OSCC (FA, Bloom's syndrome, Ataxia Telangiectasia); this is true for OSCC that occurs in young patients, sometimes with little/no exposure to classical risk factors. Even in Dyskeratosis Congenita, a disorder of the telomerase complex that is also predisposed to OSCC, attempts at maintaining telomere length involve a pathway with shared HR genes. Defects in the HR/FA pathway therefore appear to be pivotal in conditions that are predisposed to OSCC. There is also some evidence that abnormalities in the HR/FA pathway are associated with malignant transformation of sporadic cases OPMD and OSCC. We provide data showing overexpression of HR/FA genes in a cell-cycle-dependent manner in a series of OPMD-derived immortal keratinocyte cell lines compared to their mortal counterparts. The observations in this study argue strongly for an important role of the HA/FA DNA repair pathway in the development of OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Anemia de Fanconi , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Neoplasias de la Boca/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeza y Cuello , ADN
16.
Physiol Mol Biol Plants ; 30(2): 185-198, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38623165

RESUMEN

The impending climate change is threatening the rice productivity of the Asian subcontinent as instances of crop failures due to adverse abiotic and biotic stress factors are becoming common occurrences. CRISPR-Cas9 mediated genome editing offers a potential solution for improving rice yield as well as its stress adaptation. This technology allows modification of plant's genetic elements and is not dependent on foreign DNA/gene insertion for incorporating a particular trait. In this review, we have discussed various CRISPR-Cas9 mediated genome editing tools for gene knockout, gene knock-in, simultaneously disrupting multiple genes by multiplexing, base editing and prime editing the genes. The review here also presents how these genome editing technologies have been employed to improve rice productivity by directly targeting the yield related genes or by indirectly manipulating various abiotic and biotic stress responsive genes. Lately, many countries treat genome-edited crops as non-GMOs because of the absence of foreign DNA in the final product. Thus, genome edited rice plants with improved yield attributes and stress resilience are expected to be accepted by the public and solve food crisis of a major portion of the globe. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01423-y.

17.
Front Genet ; 15: 1276365, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577247

RESUMEN

Background: Maintenance of the genome is essential for cell survival, and impairment of the DNA damage response is associated with multiple pathologies including cancer and neurological abnormalities. DNA-PKcs is a DNA repair protein and a core component of the classical nonhomologous end-joining pathway, but it also has roles in modulating gene expression and thus, the overall cellular response to DNA damage. Methods: Using cells producing either wild-type (WT) or kinase-inactive (KR) DNA-PKcs, we assessed global alterations in gene expression in the absence or presence of DNA damage. We evaluated differential gene expression in untreated cells and observed differences in genes associated with cellular adhesion, cell cycle regulation, and inflammation-related pathways. Following exposure to etoposide, we compared how KR versus WT cells responded transcriptionally to DNA damage. Results: Downregulated genes were mostly involved in protein, sugar, and nucleic acid biosynthesis pathways in both genotypes, but enriched biological pathways were divergent, again with KR cells manifesting a more robust inflammatory response compared to WT cells. To determine what major transcriptional regulators are controlling the differences in gene expression noted, we used pathway analysis and found that many master regulators of histone modifications, proinflammatory pathways, cell cycle regulation, Wnt/ß-catenin signaling, and cellular development and differentiation were impacted by DNA-PKcs status. Finally, we have used qPCR to validate selected genes among the differentially regulated pathways to validate RNA sequence data. Conclusion: Overall, our results indicate that DNA-PKcs, in a kinase-dependent fashion, decreases proinflammatory signaling following genotoxic insult. As multiple DNA-PK kinase inhibitors are in clinical trials as cancer therapeutics utilized in combination with DNA damaging agents, understanding the transcriptional response when DNA-PKcs cannot phosphorylate downstream targets will inform the overall patient response to combined treatment.

18.
Front Microbiol ; 15: 1333194, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481790

RESUMEN

Double-strand breaks (DSBs) are the most dangerous injuries for a genome. When unrepaired, death quickly ensues. In most bacterial systems, DSBs are repaired through homologous recombination. Nearly one-quarter of bacterial species harbor a second system, allowing direct ligation of broken ends, known as Non-Homologous End Joining (NHEJ). The relative role of both systems in DSBs repair in bacteria has been explored only in a few cases. To evaluate this in the bacterium Rhizobium etli, we used a modified version of the symbiotic plasmid (264 kb), containing a single copy of the nifH gene. In this plasmid, we inserted an integrative plasmid harboring a modified nifH gene fragment containing an I-SceI site. DSBs were easily inflicted in vivo by conjugating a small, replicative plasmid that expresses the I-SceI nuclease into the appropriate strains. Repair of a DSB may be achieved through homologous recombination (either between adjacent or distant repeats) or NHEJ. Characterization of the derivatives that repaired DSB in different configurations, revealed that in most cases (74%), homologous recombination was the prevalent mechanism responsible for repair, with a relatively minor contribution of NHEJ (23%). Inactivation of the I-SceI gene was detected in 3% of the cases. Sequence analysis of repaired derivatives showed the operation of NHEJ. To enhance the number of derivatives repaired through NHEJ, we repeated these experiments in a recA mutant background. Derivatives showing NHEJ were readily obtained when the DSB occurred on a small, artificial plasmid in a recA mutant. However, attempts to deliver a DSB on the symbiotic plasmid in a recA background failed, due to the accumulation of mutations that inactivated the I-SceI gene. This result, coupled with the absence of derivatives that lost the nonessential symbiotic plasmid, may be due to an unusual stability of the symbiotic plasmid, possibly caused by the presence of multiple toxin-antitoxin modules.

19.
Radiother Oncol ; 194: 110198, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38438016

RESUMEN

BACKGROUND AND PURPOSE: Ionizing radiation (IR) induces DNA double-strand breaks (DSBs), leading to micronuclei formation, which has emerged as a key mediator of inflammatory responses after IR. This study aimed to investigate the signaling cascade in inflammatory gene expression using fibroblasts harboring DNA damage response deficiency after exposure to IR. MATERIALS AND METHODS: Micronuclei formation was examined in human dermal fibroblasts derived from patients with deficiencies in ATM, ATR, MRE11, XLF, Artemis, or BRCA2 after IR. RNA-sequencing analysis was performed to assess gene expression, pathway mapping, and the balance of transcriptional activity using the transcription factor-based downstream gene expression mapping (TDEM) method developed in this study. RESULTS: Deficiencies in ATM, ATR, or MRE11 led to increased micronuclei formation after IR compared to normal cells. RNA-seq analysis revealed significant upregulation of inflammatory expression in cells deficient in ATM, ATR, or MRE11 following IR. Pathway mapping analysis identified the upregulation of RIG-I, MDA-5, IRF7, IL6, and interferon stimulated gene expression after IR. These changes were pronounced in cells deficient in ATM, ATR, or MRE11. TDEM analysis suggested the differential activation of STAT1/3-pathway between ATM and ATR deficiency. CONCLUSION: Enhanced micronuclei formation upon ATM, ATR, or MRE11 deficiency activated the cGAS/STING, RIG-I-MDA-5-IRF7-IL6 pathway, resulting in its downstream interferon stimulated gene expression following exposure to IR. Our study provides comprehensive information regarding the status of inflammation-related gene expression under DSB repair deficiency after IR. The generated dataset may be useful in developing functional biomarkers to accurately identify patients sensitive to radiotherapy.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Fibroblastos , Radiación Ionizante , Transducción de Señal , Humanos , Fibroblastos/efectos de la radiación , Fibroblastos/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/deficiencia , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína Homóloga de MRE11/genética , Inflamación/etiología , Roturas del ADN de Doble Cadena
20.
Trends Biochem Sci ; 49(5): 391-400, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490833

RESUMEN

One of the two chromosomal breakage events in recurring translocations in B cell neoplasms is often due to the recombination-activating gene complex (RAG complex) releasing DNA ends before end joining. The other break occurs in a fragile zone of 20-600 bp in a non-antigen receptor gene locus, with a more complex and intriguing set of mechanistic factors underlying such narrow fragile zones. These factors include activation-induced deaminase (AID), which acts only at regions of single-stranded DNA (ssDNA). Recent work leads to a model involving the tethering of AID to the nascent RNA as it emerges from the RNA polymerase. This mechanism may have relevance in class switch recombination (CSR) and somatic hypermutation (SHM), as well as broader relevance for other DNA enzymes.


Asunto(s)
ARN , Translocación Genética , Humanos , ARN/metabolismo , ARN/genética , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Sitios Frágiles del Cromosoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA