Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Front Microbiol ; 15: 1436773, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091301

RESUMEN

Magnetotactic bacteria (MTB) are promising candidates for use as biomicrorobots in biomedical applications due to their motility, self-propulsion, and the ability to direct their navigation with an applied magnetic field. When in the body, the MTB may encounter non-Newtonian fluids such as blood plasma or mucus. However, their motility and the effectiveness of directed navigation in non-Newtonian fluids has yet to be studied on a single-cell level. In this work, we investigate motility of Magnetospirillum magneticum AMB-1 in three concentrations of polyacrylamide (PAM) solution, a mucus-mimicking fluid. The swimming speeds increase from 44.0 ± 13.6 µm/s in 0 mg/mL of PAM to 52.73 ± 15.6 µm/s in 1 mg/mL then decreases to 24.51 ± 11.7 µm/s in 2 mg/mL and 21.23 ± 10.5 µm/s in 3 mg/mL. This trend of a speed increase in low polymer concentrations followed by a decrease in speed as the concentration increases past a threshold concentration is consistent with other studies of motile, flagellated bacteria. Past this threshold concentration of PAM, there is a higher percentage of cells with an overall trajectory angle deviating from the angle of the magnetic field lines. There is also less linearity in the trajectories and an increase in reversals of swimming direction. Altogether, we show that MTB can be directed in polymer concentrations mimicking biological mucus, demonstrating the influence of the medium viscosity on the linearity of their trajectories which alters the effective path that could be predefined in Newtonian fluids when transport is achieved by magnetotaxis.

2.
Sci Rep ; 14(1): 19709, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39181970

RESUMEN

This article demonstrates a mathematical model and theoretical analysis of the Micropolar fluid in the reverse roll coating process. It is important because micropolar fluids account for the microstructure and microrotation of particles within the fluid. These characteristics are significant for accurately describing the behavior of complex fluids such as polymer solutions, biological fluids, and colloidal suspensions. First, we modeled the flow equations using basic laws of fluid dynamics. The flow equations are made modified using low Reynolds number theory. The simplified equations are solved analytically. The exact expression for velocity and pressure gradient are obtained, while pressure is calculated numerically using Simpson Rule. Graphical depictions are carried out to comprehend the impact of the newly emerged physical constraints. The influence of micropolar and microrotation parameters on the velocity, pressure and pressure gradient are elaborated with the help of different graphs.

3.
J Environ Manage ; 367: 121948, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39083945

RESUMEN

The hydrodynamic disintegration process depends, among others, on operational parameters like rotational speed or introduced energy. The study presents an interdisciplinary approach to the hydrodynamic disintegration parameters impact assessment on the internal processes and disintegration effects on the example of sewage sludge treatment. Three rotational speeds were considered, including fluid properties change at selected disintegration stages. Disintegration effects were measured in the bench tests. Soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFA) were measured before and after disintegration process. The assessment of the effects of disintegration employed the disintegration degree and the assessment of the course of methane production employed biochemical methane potential (BMP) tests. Fluid properties change during the disintegration stages does not cause a significant change in the flow structure. Due to the mathematical modelling results, at 1500 rpm no cavitation phenomenon was observed. Although, the bench tests results indicates, for the rotational speed 1500 rpm, organic compounds released to the liquid were characterised by higher susceptibility to biological decomposition than those released for 2500 and 3000 rpm (as suggested by the low SCOD/VFA values for 1500 rpm). Obtained results have confirmed, that the main phenomenon responsible for the disintegration effect is mechanical shredding not cavitation.


Asunto(s)
Análisis de la Demanda Biológica de Oxígeno , Hidrodinámica , Modelos Teóricos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Eliminación de Residuos Líquidos/métodos , Ácidos Grasos Volátiles/metabolismo , Metano
4.
Heliyon ; 10(9): e30443, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38720729

RESUMEN

Ischemic stroke, particularly embolic stroke, stands as a significant global contributor to mortality and long-term disabilities. This paper presents a comprehensive simulation of emboli motion through the middle cerebral artery (MCA), a prevalent site for embolic stroke. Our patient-specific computational model integrates major branches of the middle cerebral artery reconstructed from magnetic resonance angiography images, pulsatile flow dynamics, and emboli of varying geometries, sizes, and material properties. The fluid-structure interactions method is employed to simulate deformable emboli motion through the middle cerebral artery, allowing observation of hemodynamic changes in artery branches upon embolus entry. We investigated the impact of embolus presence on shear stress magnitude on artery walls, analyzed the effects of embolus material properties and geometries on embolus trajectory and motion dynamics within the middle cerebral artery. Additionally, we evaluated the non-Newtonian behavior of blood, comparing it with Newtonian blood behavior. Our findings highlight that embolus geometry significantly influences trajectory, motion patterns, and hemodynamics within middle cerebral artery branches. Emboli with visco-hyperelastic material properties experienced higher stresses upon collision with artery walls compared to those with hyperelastic properties. Furthermore, considering blood as a non-Newtonian fluid had notable effects on emboli stresses and trajectories within the artery, particularly during collisions. Notably, the maximum von Mises stress experienced in our study was 21.83 kPa, suggesting a very low probability of emboli breaking during movement, impact, and after coming to a stop. However, in certain situations, the magnitude of shear stress on them exceeded 1 kPa, increasing the likelihood of cracking and disintegration. These results serve as an initial step in anticipating critical clinical conditions arising from arterial embolism in the middle cerebral artery. They provide insights into the biomechanical parameters influencing embolism, contributing to improved clinical decision-making for stroke management.

5.
Bioprocess Biosyst Eng ; 47(5): 633-649, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38557906

RESUMEN

Fluid hydrodynamic stress has a deterministic effect on the morphology of filamentous fungi. Although the coaxial mixer has been recognized as a suitable gas dispersion system for minimizing inhomogeneities within a bioreactor, its performance for achieving enhanced oxygen transfer while operating at a reduced shear environment has not been investigated yet, specifically upon scale-up. Therefore, the influence of the impeller type, aeration rate, and central impeller retrofitting on the efficacy of an abiotic coaxial system containing a shear-thinning fluid was examined. The aim was to assess the hydrodynamic parameters, including stress, mass transfer, bubble size, and gas hold-up, upon conducting a scale-up study. The investigation was conducted through dynamic gassing-in, tomography, and computational fluid dynamics combined with population balance methods. It was observed that the coaxial bioreactor performance was strongly influenced by the agitator type. In addition, coaxial bioreactors are scalable in terms of shear environment and oxygen transfer rate.


Asunto(s)
Reactores Biológicos , Hidrodinámica , Fermentación , Oxígeno/metabolismo , Oxígeno/química , Estrés Mecánico
6.
Sci Rep ; 14(1): 6694, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509193

RESUMEN

The impact of baffles on a convective heat transfer of a non-Newtonian fluid is experimentally studied within a square cavity. The non-Newtonian fluid is pumped into the cavity through the inlet and subsequently departs from the cavity via the outlet. Given the inherent non-linearity of the model, a numerical technique has been selected as the method for obtaining the outcomes. Primarily, the governing equations within the two-dimensional domain have been discretized using the finite element method. For approximating velocity and pressure, we have employed the reliable P 2 - P 1 finite element pair, while for temperature, we have opted for the quadratic basis. To enhance convergence speed and accuracy, we employ the powerful multigrid approach. This study investigates how key parameters like Richardson number (Ri), Reynolds number (Re), and baffle gap b g influence heat transfer within a cavity comprising a non-Newtonian fluid. The baffle gap ( b g ) has been systematically altered within the range of 0.2-0.6, and for this research, three distinct power law indices have been selected namely: 0.5, 1.0, and 1.5. The primary outcomes of the investigation are illustrated through velocity profiles, streamlines, and isotherm visualizations. Furthermore, the study includes the computation of the Nu avg (average Nusselt number) across a range of parameter values. As the Richardson number (Ri) increases, Nu avg also rises, indicating that an increase in Ri results in augmented average heat transfer. Making the space between the baffles wider makes heat flow more intense. This, in turn, heats up more fluid within the cavity.

7.
Proc Inst Mech Eng H ; 238(4): 444-454, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503717

RESUMEN

In this paper, a two-way fluid-structure coupling model is developed to simulate and analyze the hemodynamic process based on dynamic coronary angiography, and examine the influence of different hemodynamic parameters on coronary arteries in typical coronary stenosis lesions. Using the measured FFR pressure data of a patient, the pressure-time function curve is fitted to ensure the accuracy of the boundary conditions. The average error of the simulation pressure results compared to the test data is 6.74%. In addition, the results related to blood flow, pressure contour and wall shear stress contour in a typical cardiac cycle are obtained by simulation analysis. These results are found to be in good agreement with the laws of the real cardiac cycle, which verifies the rationality of the simulation. In conclusion, based on the modeling and hemodynamic simulation analysis process of dynamic coronary angiography, this paper proposes a method to assist the analysis and evaluation of coronary hemodynamic and functional parameters, which has certain practical significance.


Asunto(s)
Estenosis Coronaria , Modelos Cardiovasculares , Humanos , Hemodinámica , Simulación por Computador , Vasos Coronarios/diagnóstico por imagen , Estenosis Coronaria/diagnóstico por imagen
8.
Sci Rep ; 14(1): 4482, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396191

RESUMEN

This article provides a comparison among the generalized Second Grade fluid flow described by three recently proposed fractional derivatives i.e. Atangana Baleanu fractional derivative in Caputo sense (ABC), Caputo Fabrizio (CF) and Constant Proportional-Caputo hybrid (CPC) fractional derivative. The heat mass transfer is observed during the flow past a vertical porous plate that is accelerated exponentially under the effects of the Magneto hydro dynamics. The effects of the heat generation and exponential heating in the temperature boundary layer and chemical reaction at the concentration boundary layer are also analyzed in this article. The flow model is described by three partial differential equations and the set of non-dimensional PDE's is transformed into ODE's by utilization of the integral transform technique (Laplace transform). For the better understanding of the rheological properties of the Second Grade fluid we used the CF, ABC and CPC operators to describe the memory effects. The analytical exact solution of the problem is obtained in the form of G-functions and Mittag Leffler functions. For the physical significance of flow parameters, different parameters are graphed. From this analysis it is concluded that the CPC is the most suitable operator to describe the memory effects.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38297822

RESUMEN

In this study, researchers aim to enhance the realism of circulatory system simulations, focusing on factors affecting flow variations, particularly in stenotic arteries of individuals with altered hematocrit levels. Through extensive data collection and varied conditions, the goal is to attain more precise and valid results. The study conducts approximate simulations to comprehensively describe the dynamic motion of pulsatile flow. Different values of inlet velocity (UDF) are introduced, considering potential arterial distortion or occlusion due to plaque deposition, along with variations in hematocrit (Hct) levels commonly observed in patients. Three distinct types of pulsatile blood flow, corresponding to diabetes (Hct 65%), healthy (Hct 45%), and anemia (Hct 25%), are studied and compared. The research illuminates that stenosis in arteries with varying hematocrit levels significantly impacts hydrodynamic features, potentially predisposing individuals to cardiovascular diseases. Through meticulous analysis, several conclusions about hemodynamic characteristics are drawn. It is observed that both velocity and wall shear stress exhibit variation along the affected artery, influenced by stenosis and changes in hematocrit levels. Notably, the highest influence on velocity and wall shear stress is observed with Hct 65%, compared to Hct 45% and Hct 25% at the moment of stenosis. These findings hold substantial practical implications for the field of cardiovascular health, providing valuable insights into blood flow behavior in stenotic arteries with diverse hematocrit levels. Ultimately, this research contributes to more effective clinical interventions.

10.
Data Brief ; 53: 110101, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38361977

RESUMEN

This paper presents a dataset comprising measurements of the sinking dynamics of microplastics settling in artificial seawater (AS) and in dispersions of polymers in seawater: xanthan gum, kappa-carrageenan, and their mixtures in two concentrations: 0.5 g/L and 1 g/L. Plastic particles are classified into fifteen groups representing various shapes: disks, rods, blades, spheres, and materials: PS, POM, PET, PA6. The sinking of individual particles in a settling tank was visualized using the shadowgraph method and images were recorded using a camera with macro lenses. Next, Particle Tracking Velocimetry was applied to retrieve the time-resolved position of MPs and their orientation and to calculate instantaneous sinking velocity. Non-Newtonian properties of solutions were measured using a rheometer. Shear-dependent viscosity, shear stress amplitude sweeps, the first normal stress difference, and gelling time were assessed. Datasets may find application in a range of scientific and engineering areas including fluid mechanics, chemical engineering, food engineering, petroleum industry, wastewater treatment, rheology, and environmental hydrodynamics, e.g. in research on particle dynamics in complex fluids, modeling of microplastics fate in aqueous systems, and to develop numerical models on the hydrodynamics of solid particles in complex liquids.

11.
Sci Rep ; 14(1): 4950, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418531

RESUMEN

The use of renewable energy sources is leading the charge to solve the world's energy problems, and non-Newtonian nanofluid dynamics play a significant role in applications such as expanding solar sheets, which are examined in this paper, along with the impacts of activation energy and solar radiation. We solve physical flow issues using partial differential equations and models like Casson, Williamson, and Prandtl. To get numerical solutions, we first apply a transformation to make these equations ordinary differential equations, and then we use the MATLAB-integrated bvp4c methodology. Through the examination of dimensionless velocity, concentration, and temperature functions under varied parameters, our work explores the physical properties of nanofluids. In addition to numerical and tabular studies of the skin friction coefficient, Sherwood number, and local Nusselt number, important components of the flow field are graphically shown and analyzed. Consistent with previous research, this work adds important new information to the continuing conversation in this area. Through the examination of dimensionless velocity, concentration, and temperature functions under varied parameters, our work explores the physical properties of nanofluids. Comparing the Casson nanofluid to the Williamson and Prandtl nanofluids, it is found that the former has a lower velocity. Compared to Casson and Williamson nanofluid, Prandtl nanofluid advanced in heat flux more quickly. The transfer of heat rates are 25.87 % , 33.61 % and 40.52 % at R d = 0.5 , R d = 1.0 , and R d = 1.5 , respectively. The heat transfer rate is increased by 6.91 % as the value of Rd rises from 1.0 to 1.5. This study is further strengthened by a comparative analysis with previous research, which is complemented by an extensive table of comparisons for a full evaluation.

12.
Int J Numer Method Biomed Eng ; 40(2): e3790, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37997039

RESUMEN

The mechanics of bile flow in the biliary system plays an important role in studying bile stasis and gallstone formation. Bile duct stricture is an abnormal phenomenon that refers to the bile duct getting smaller or narrower. The main objective of this study is to study the influence of stricture on bile flow dynamics using numerical methods. We employed a numerical Computational Fluid Dynamics model of the bile flow within a strictured hepatic duct. We studied and compared the influence of stricture severity, stricture length, eccentricity, and bile flow property on the bile flow dynamics. The bile flow velocity, pressure distribution, pressure drop, and wall shear stress are provided in detail. The stricture alters the normal bile flow pattern and increases flow resistance. At the location upstream and downstream of the stricture, bile flow slows down. In the area of the stricture throat, bile flow is accelerated, and recirculation forms behind the stricture. The maximum pressure drop of the biliary system increases with the stricture length. The eccentricity makes the flow deflect away from the duct's centerline. The behavior of the deflected flow is significantly altered downstream of the stricture. Such bile flow behavior as deceleration and recirculation may lead to cholestasis. Stricture alters bile flow in the biliary tract, causing changes in biliary hydrodynamic indexes, which could potentially serve as an omen for gallstone formation and other related diseases. The consideration of the bile duct stricture could lead to better patient stratification.


Asunto(s)
Bilis , Cálculos Biliares , Humanos , Cálculos Biliares/complicaciones , Constricción Patológica , Conductos Biliares
13.
Biomed Mater Eng ; 35(2): 165-178, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38043001

RESUMEN

BACKGROUND: Sand therapy is a non-pharmacological physiotherapy method that uses the natural environment and resources of Xinjiang to treat through the heat transfer and magnetic effects of sand. OBJECTIVE: Employing the two-phase flow-Casson blood flow model, we investigate the mechanism of atherosclerosis prevention via sand therapy, offering a biomechanical theoretical rationale for the prevention of atherosclerosis through sand therapy via the prism of computational fluid dynamics (CFD). METHODS: Sand therapy experiments were conducted to obtain popliteal artery blood flow velocity, and blood was considered as a two-phase flow composed of plasma and red blood cells, and CFD method was applied to analyze the hemodynamic effects of Casson's blood viscosity model before and after sand therapy. RESULTS: (1) The blood flow velocity increased by 0.24 m/s and 0.04 m/s at peak systolic and diastolic phases, respectively, after sand therapy; the axial velocity of blood vessels increased by 28.56% after sand therapy. (2) The average red blood cell viscosity decreased by 0.00014 Pa ⋅ s after sand therapy. (3) The low wall shear stress increased by 1.09 Pa and the high wall shear stress reached 41.47 Pa after sand therapy. (4) The time-averaged wall shear stress, shear oscillation index and relative retention time were reduced after sand therapy. CONCLUSION: The increase of blood flow velocity after sand therapy can reduce the excessive deposition of cholesterol and other substances, the decrease of erythrocyte viscosity is beneficial to the migration of erythrocytes to the vascular center, the increase of low wall shear stress has a positive effect on the prevention of atherosclerosis, and the decrease of time-averaged wall shear stress, shear oscillation index and relative retention time can reduce the occurrence of thrombosis.


Asunto(s)
Aterosclerosis , Arena , Humanos , Simulación por Computador , Modelos Cardiovasculares , Aterosclerosis/prevención & control , Arterias , Velocidad del Flujo Sanguíneo , Hemodinámica , Estrés Mecánico
14.
Int J Pharm ; 651: 123752, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38159584

RESUMEN

One of the most common reported adverse events for intravenous (IV) infusions are infusion site reactions, ranging from redness and pain at the site of infusion to thrombophlebitis.  The connection between drug infusion and what drives these adverse events is not well understood. To aid in understanding these phenomena, it is crucial to accurately characterize the evolving hemodynamic environment of the infusion site when developing new intravenous formulations, as too rapid dilution may cause precipitation in the vein, while too little dilution might contribute to phlebitis. In this study, a Large-Eddy Simulation (LES) turbulence modeling inside a Computational Fluid Dynamics (CFD) framework has been used to simulate the flow and mixing characteristics of an infusion entering the bloodstream. This work represents the first such study reporting transient flow fields for intravenous infusions using LES CFD simulations with a realistic non-Newtonian blood model. The output of the CFD model closely resembled the flow and mixing patterns generated in benchtop tests for infusions into a blood analogue and water as the venous fluid across a wide range of flow rates.  These models were then investigated further to compare how changes to the fluid rheology model, needle orientation and needle position within the vein resulted in altered mixing regimes at different flow rates.


Asunto(s)
Hemodinámica , Hidrodinámica , Infusiones Intravenosas , Simulación por Computador , Reología/métodos
15.
Micromachines (Basel) ; 14(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38004934

RESUMEN

Electroosmotic flow (EOF) is of utmost significance due to its numerous practical uses in controlling flow at micro/nanoscales. In the present study, the time-periodic EOF of a viscoelastic fluid is statistically analyzed using a short 10:1 constriction microfluidic channel joining two reservoirs on either side. The flow is modeled using the Oldroyd-B (OB) model and the Poisson-Boltzmann model. The EOF of a highly concentrated polyacrylamide (PAA) aqueous solution is investigated under the combined effects of an alternating current (AC) electric field and a direct current (DC) electric field. Power-law degradation is visible in the energy spectra of the velocity fluctuations over a wide frequency range, pointing to the presence of elastic instabilities in the EOF. The energy-spectra curves of the velocity fluctuations under a DC electric field exhibit peaks primarily beneath 20 Hz, with the greatest peak being observed close to 6 Hz. When under both DC and AC electric fields, the energy spectra of the velocity fluctuations exhibit a peak at the same frequency as the AC electric field, and the highest peak is obtained when the frequency of the AC electric field is near 6 Hz. Additionally, the frequency of the AC electric field affects how quickly the viscoelastic EOF flows. Higher flow rates are obtained at relatively low frequencies compared to under the DC electric field, and the greatest flow rate is found close to 6 Hz. But as the frequency rises further, the flow rate falls. The flow rate falls to a level below the DC electric field when the frequency is sufficiently high.

16.
Micromachines (Basel) ; 14(10)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37893245

RESUMEN

Because of the ease with which oxide films form on its surfaces, stainless steel has strong corrosion resistance and excellent processing performance. Electrochemical machining (ECM) is a flexible process that can create microstructures on stainless steel (SS304); however, with traditional masked ECM, the efficiency and accuracy of microstructure machining are low. Proposed here is the use of a non-Newtonian fluid [polyacrylamide (PAM)] as the electrolyte. To date, there have been few papers on the electrochemical dissolution behavior of stainless-steel micromachining with a non-Newtonian fluid as the electrolyte. The aims of the study reported here were to investigate the electrochemical properties of SS304 with PAM and PAM-NaOH as electrolytes, and to explain their electrochemical corrosion mechanisms. The effects of different electrolytes were compared, and the polarization curves of SS304 in PAM and PAM-NaOH electrolyte solutions with different components were analyzed and compared with that in NaNO3 electrolyte. Then, the effects of the main processing parameters (pulse voltage, frequency, and duty ratio) on the machining performance were investigated in detail. A microhole array was obtained with a good quality comprising an average diameter of 330.11 µm, an average depth of 16.13 µm, and a depth-to-diameter ratio of 0.048. Using PAM to process microstructures on stainless-steel surfaces was shown to be feasible, and experiments indicated that the mixed electrolyte (PAM-NaOH) had not only the physical characteristics of a non-Newtonian fluid but also the advantages of a traditional electrolyte to dissolve processing products, and it effectively improved the processing accuracy of masked ECM for SS304.

17.
Polymers (Basel) ; 15(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37688210

RESUMEN

Multi-layer fabrics are commonly used in ballistics shields with a lower bulletproof class to protect against pistol and revolver bullets. In order to additionally limit the dynamic deflection of the samples, layers reinforced with additional materials, including non-Newtonian fluids compacted by shear, are additionally used. Performing a wide range of tests in each case can be very problematic; therefore, there are many calculation methods that allow, with better or worse results, mapping of the behavior of the material in the case of impact loads. The search for simplified methods is very important in order to simplify the complexity of numerical fabric models while maintaining the accuracy of the results obtained. In this article, multi-layer composites were tested. Two samples were included in the elements subjected to shelling. In the first sample, the outer layers consisted of aramid fabrics in a laminate with a thermoplastic polymer matrix. The middle layer contained a non-Newtonian shear-thickening fluid enclosed in hexagonal (honeycomb) cells. The fluid was produced using polypropylene glycol and colloidal silica powder with a diameter of 14 µm in the proportions of 60/40. The backing plate was made using a 12-layer composite made of Twaron® para-aramid fabrics with a DCPD matrix-not yet used in a wide range of ballistics. Then, numerical simulations were carried out in the Abaqus/Explicit dynamic analysis. The Johnson-Cook constitutive strength model was used to describe the behavior of elastic-plastic materials constituting the elements of the projectiles. For the non-Newtonian fluid, a Up-Us EOS was used. The inner layers of the fabric were treated as an orthotropic material. Complete homogenization of the sample layers was carried out, thanks to which each layer was treated as a homogeneous continuum. As a parameter of fracture mechanics for shield components, the strain criterion was used with the smooth particles hydrodynamics method (SPH). Then, the results of simulations were compared with the results of the ballistic test for both samples placed next to each other, which resulted in the formation of a multi-layer composite in one ballistic test subjected to impact loads during firing with a 9 × 19 mm Parabellum FMJ projectile with an initial velocity of 370 ± 10 m/s. The results of numerical tests are very similar to the ballistic tests, which indicates the correct mapping of the process and the correct conduct of layer homogenization. The applied proportions of the components in the non-Newtonian fluid allowed a reduction in the deflection compared to previous studies. Additionally, the proposal to use a DCPD matrix allowed to obtain a much lower deflection value compared to other materials, which is a novelty in the field of production of ballistic shields.

18.
Heliyon ; 9(8): e18672, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37576213

RESUMEN

This work reported to investigate convective flow of non-Newtonian fluid effect on an exponentially stretchable surface. Effect of nanoparticle is considered in heat and mass equation. The transformation technique utilized on dimensionless equations is converted to non-dimensionless equations are solved thought numerical approach Bvp4c. Influence of approatiate analysis of velocities, heat and mass transport are scrutinized through figures. Furthermore, the comparative analysis of drag forces, Nusselt number and Sherwood number are evaluated over and done with tabulated values. It is give details that the temperature field strengthens with intensification in thermophoresis and random diffusions. Similarly, rises in thermophoresis effect parameter both temperature and concentration profile increasing.

19.
Micromachines (Basel) ; 14(7)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37512727

RESUMEN

This study employs OpenFOAM to analyze the behavior of a single laser-produced cavitation bubble in a Newtonian/non-Newtonian fluid inside a rigid cylinder. This research aimed to numerically calculate the impact of liquid disc microjet resulting from the growth and collapse of the laser-produced bubble to the cylinder wall to take advantage of the cavitation phenomenon in various industrial and medical applications, such as modeling how to remove calcification lesions in coronary arteries. In addition, by introducing the main study cases in which a single bubble with different initial conditions is produced by a laser in the center/off-center of a cylinder with different orientations relative to the horizon, filled with a stationary or moving Newtonian/Non-Newtonian liquid, the general behavior of the bubble in the stages of growth and collapse and the formation of liquid disk microjet and its impact is examined. The study demonstrates that the presence of initial velocity in water affects the amount of microjet impact proportional to the direction of gravity. Moreover, the relationship between the laser energy and the initial conditions of the bubble and the disk microjet impact on the cylinder wall is expressed.

20.
Front Robot AI ; 10: 1113881, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346053

RESUMEN

Frictionally yielding media are a particular type of non-Newtonian fluids that significantly deform under stress and do not recover their original shape. For example, mud, snow, soil, leaf litters, or sand are such substrates because they flow when stress is applied but do not bounce back when released. Some robots have been designed to move on those substrates. However, compared to moving on solid ground, significantly fewer prototypes have been developed and only a few prototypes have been demonstrated outside of the research laboratory. This paper surveys the existing biology and robotics literature to analyze principles of physics facilitating motion on yielding substrates. We categorize animal and robot locomotion based on the mechanical principles and then further on the nature of the contact: discrete contact, continuous contact above the material, or through the medium. Then, we extract different hardware solutions and motion strategies enabling different robots and animals to progress. The result reveals which design principles are more widely used and which may represent research gaps for robotics. We also discuss that higher level of abstraction helps transferring the solutions to the robotics domain also when the robot is not explicitly meant to be bio-inspired. The contribution of this paper is a review of the biology and robotics literature for identifying locomotion principles that can be applied for future robot design in yielding environments, as well as a catalog of existing solutions either in nature or man-made, to enable locomotion on yielding grounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA