Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1460: 273-295, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287855

RESUMEN

Obesity is characterized by the chronic low-grade activation of the innate immune system. In this respect, macrophage-elicited metabolic inflammation and adipocyte-macrophage interaction have primary importance in obesity. Large quantity of macrophages is accumulated by different mechanisms in obese adipose tissue. Hypertrophic adipocyte-derived chemotactic monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2) pathway promotes more macrophage accumulation into the obese adipose tissue. However, obesity-induced changes in adipose tissue macrophage density are mainly dependent on increases in the triple-positive cluster of differentiation (CD)11b+ F4/80+ CD11c+ adipose tissue macrophage subpopulation. As epigenetic regulators, microRNAs (miRNAs) are one of the most important mediators of obesity. miRNAs are expressed by adipocytes as well as macrophages and regulate inflammation with the expression of target genes. A paracrine loop involving free fatty acids and tumor necrosis factor-alpha (TNF-α) between adipocytes and macrophages establishes a vicious cycle that aggravates inflammatory changes in the adipose tissue. Adipocyte-specific caspase-1 and production of interleukin-1beta (IL-1ß) by macrophages; both adipocyte and macrophage induction by toll-like receptor-4 (TLR4) through nuclear factor-kappaB (NF-κB) activation; free fatty acid-induced and TLR-mediated activation of c-Jun N-terminal kinase (JNK)-related pro-inflammatory pathways in CD11c+ immune cells; are effective in mutual message transmission between adipocyte and macrophage and in the development of adipose tissue inflammation. Thus, the metabolic status of adipocytes and their released exosomes are important determinants of macrophage inflammatory output. However, old adipocytes are removed by macrophages through trogocytosis or sending an "eat me" signal. As a single miRNA can be able to regulate a variety of target genes and signaling pathways, reciprocal transfer of miRNAs between adipocytes and macrophages via miRNA-loaded exosomes reorganizes the different stages of obesity. Changes in the expression of circulating miRNAs because of obesity progression or anti-obesity treatment indicate that miRNAs could be used as potential biomarkers. Therefore, it is believed that targeting macrophage-associated miRNAs with anti-obesity miRNA-loaded nano-carriers may be successful in the attenuation of both obesity and adipose tissue inflammation in clinical practice. Moreover, miRNA-containing exosomes and transferable mitochondria between the adipocyte and macrophage are investigated as new therapeutic targets for obesity-related metabolic disorders.


Asunto(s)
Adipocitos , Macrófagos , Obesidad , Obesidad/metabolismo , Obesidad/genética , Humanos , Macrófagos/metabolismo , Macrófagos/inmunología , Adipocitos/metabolismo , Animales , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal , Tejido Adiposo/metabolismo , Inflamación/metabolismo , Inflamación/patología , Comunicación Celular
2.
J Mol Med (Berl) ; 102(5): 655-665, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38436712

RESUMEN

NOD-like receptor family CARD domain containing 3 (NLRC3) is the intracellular protein belonging to NLR (NOD-like receptor) family. NLRC3 can negatively regulate inflammatory signal transduction pathways within the adaptive and innate immunocytes. However, studies need to elucidate the biological role of NLRC3 in bone remodeling. Herein, our study proved that NLRC3 prevents bone loss by inhibiting TNFα+ Th17 cell responses. In osteoporosis, NLRC3 attenuated TNFα+ Th17 cell accumulation in the bone marrow. However, osteoporosis (OP) development was aggravated without affecting bone marrow macrophage (BMM) osteoclastogenesis in NLRC3-deficient ovariectomized (OVX) mice. In this study, we transferred the wild-type and NLRC3-/- CD4+ cells into Rag1-/- mice. Consequently, we evidenced the effects of NLRC3 in CD4+ T cells on inhibiting the accumulation of TNFα + Th17 cells, thus restricting bone loss in the OVX mice. Simultaneously, NLRC3-/- CD4+ T cells promoted the recruitment of osteoclast precursors and inflammatory monocytes into the OVX mouse bone marrow. Mechanism-wise, NLRC3 reduced the secretion of TNFα + Th17 cells of RANKL, MIP1α, and MCP1, depending on the T cells. In addition, NLRC3 negatively regulated the Th17 osteoclastogenesis promoting functions via limiting the NF-κB activation. Collectively, this study appreciated the effect of NLRC3 on modulating bone mass via adaptive immunity depending on CD4+ cells. According to findings of this study, NLRC3 may be the candidate anti-OP therapeutic target. KEY MESSAGES: NLRC3 negatively regulated the Th17 osteoclastogenesis promoting functions via limiting the NF-κB activation. NLRC3 may be the candidate anti-OP therapeutic target.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Osteoclastos , Osteogénesis , Osteoporosis , Células Th17 , Factor de Necrosis Tumoral alfa , Animales , Femenino , Ratones , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoclastos/metabolismo , Osteoporosis/genética , Osteoporosis/inmunología , Osteoporosis/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
3.
Front Oncol ; 13: 1155831, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342194

RESUMEN

Pancreatic cancer is a deadly malignancy with limited treatment options. NLRX1 is a unique, understudied member of the Nod-like Receptor (NLR) family of pattern recognition receptors that regulates a variety of biological processes that are highly relevant to pancreatic cancer. The role of NLRX1 in cancer remains highly enigmatic, with some studies defining its roles as a tumor promoter, while others characterize its contributions to tumor suppression. These seemingly contradicting roles appear to be due, at least in part, to cell type and temporal mechanisms. Here, we define roles for NLRX1 in regulating critical hallmarks of pancreatic cancer using both gain-of-function and loss-of-function studies in murine Pan02 cells. Our data reveals that NLRX1 increases susceptibility to cell death, while also suppressing proliferation, migration, and reactive oxygen species production. We also show that NLRX1 protects against upregulated mitochondrial activity and limits energy production in the Pan02 cells. Transcriptomics analysis revealed that the protective phenotypes associated with NLRX1 are correlated with attenuation of NF-κB, MAPK, AKT, and inflammasome signaling. Together, these data demonstrate that NLRX1 diminishes cancer-associated biological functions in pancreatic cancer cells and establishes a role for this unique NLR in tumor suppression.

4.
Methods Mol Biol ; 2523: 161-177, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35759197

RESUMEN

NOD-like receptors (NLRs) are established as key regulators of the innate immune system. In recent years, an increasing number of interaction partners have been described that modulate receptor activity by direct binding. Characterizing these interactions can be challenging because these receptors tend to adopt different conformational states. We have developed a protocol that employs intracellular protein biotinylation to provide a straightforward immobilization strategy in surface plasmon resonance experiments. With this highly sensitive and label-free technique, the kinetics and affinities of NLR and co-factor interactions can be measured directly at the protein level.


Asunto(s)
Proteínas NLR , Resonancia por Plasmón de Superficie , Proteínas Portadoras , Cinética , Unión Proteica , Resonancia por Plasmón de Superficie/métodos
5.
Front Genet ; 13: 867492, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35419028

RESUMEN

Uveitis is a severe ocular inflammatory disease that affects the uvea and frequently results in visual impairment, even irreversible blindness. The current treatments for uveitis have exhibited adverse side effects. To find novel targets of this disease, we perform comparative transcriptome analysis using normal (n = 4) and experimental autoimmune uveitis (EAU) (n = 4) rat iris samples. We mainly focus on the expression profiles of mRNAs and long non-coding RNAs, and identify NOD-like receptor signaling pathway as the one that plays a key role in the pathological changes of the EAU irises. Our work demonstrates that the EAU iris transcriptome can be mined to uncover novel targetable pathways for uveitis. The molecules in NOD-like receptor signaling pathway could be novel therapeutic targets for autoimmune uveitis.

6.
Genes (Basel) ; 12(2)2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562637

RESUMEN

Cetaceans are a group of secondary aquatic mammals whose ancestors returned to the ocean from land, and during evolution, their immune systems adapted to the aquatic environment. Their skin, as the primary barrier to environmental pathogens, supposedly evolved to adapt to a new living environment. However, the immune system in the skin of cetaceans and the associated molecular mechanisms are still largely unknown. To better understand the immune system, we extracted RNA from the sperm whale's (Physeter macrocephalus) skin and performed PacBio full-length sequencing and RNA-seq sequencing. We obtained a total of 96,350 full-length transcripts with an average length of 1705 bp and detected 5150 genes that were associated with 21 immune-related pathways by gene annotation enrichment analysis. Moreover, we found 89 encoding genes corresponding to 33 proteins were annotated in the NOD-like receptor (NLR)-signaling pathway, including NOD1, NOD2, RIP2, and NF-kB genes, which were discussed in detail and predicted to play essential roles in the immune system of the sperm whale. Furthermore, NOD1 was highly conservative during evolution by the sequence comparison and phylogenetic tree. These results provide new information about the immune system in the skin of cetaceans, as well as the evolution of immune-related genes.


Asunto(s)
Sistema Inmunológico/metabolismo , Filogenia , Cachalote/genética , Transcriptoma/genética , Animales , Sistema Inmunológico/inmunología , Mamíferos , RNA-Seq , Piel/inmunología , Piel/metabolismo , Cachalote/inmunología , Transcriptoma/inmunología
7.
J Biol Chem ; 295(44): 14916-14935, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32816993

RESUMEN

Plant diseases caused by pathogens and pests are a constant threat to global food security. Direct crop losses and the measures used to control disease (e.g. application of pesticides) have significant agricultural, economic, and societal impacts. Therefore, it is essential that we understand the molecular mechanisms of the plant immune system, a system that allows plants to resist attack from a wide variety of organisms ranging from viruses to insects. Here, we provide a roadmap to plant immunity, with a focus on cell-surface and intracellular immune receptors. We describe how these receptors perceive signatures of pathogens and pests and initiate immune pathways. We merge existing concepts with new insights gained from recent breakthroughs on the structure and function of plant immune receptors, which have generated a shift in our understanding of cell-surface and intracellular immunity and the interplay between the two. Finally, we use our current understanding of plant immunity as context to discuss the potential of engineering the plant immune system with the aim of bolstering plant defenses against disease.


Asunto(s)
Plantas/inmunología , Receptores Inmunológicos/metabolismo , Proteínas NLR/metabolismo , Enfermedades de las Plantas/inmunología , Plantas/metabolismo , Transducción de Señal
8.
J Biol Chem ; 295(10): 3099-3114, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32005665

RESUMEN

Upon activation with pathogen-associated molecular patterns, metabolism of macrophages and dendritic cells is shifted from oxidative phosphorylation to aerobic glycolysis, which is considered important for proinflammatory cytokine production. Fragments of bacterial peptidoglycan (muramyl peptides) activate innate immune cells through nucleotide-binding oligomerization domain (NOD) 1 and/or NOD2 receptors. Here, we show that NOD1 and NOD2 agonists induce early glycolytic reprogramming of human monocyte-derived macrophages (MDM), which is similar to that induced by the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide. This glycolytic reprogramming depends on Akt kinases, independent of mTOR complex 1 and is efficiently inhibited by 2-deoxy-d-glucose (2-DG) or by glucose starvation. 2-DG inhibits proinflammatory cytokine production by MDM and monocyte-derived dendritic cells activated by NOD1 or TLR4 agonists, except for tumor necrosis factor production by MDM, which is inhibited initially, but augmented 4 h after addition of agonists and later. However, 2-DG exerts these effects by inducing unfolded protein response rather than by inhibiting glycolysis. By contrast, glucose starvation does not cause unfolded protein response and, in normoxic conditions, only marginally affects proinflammatory cytokine production triggered through NOD1 or TLR4. In hypoxia mimicked by treating MDM with oligomycin (a mitochondrial ATP synthase inhibitor), both 2-DG and glucose starvation strongly suppress tumor necrosis factor and interleukin-6 production and compromise cell viability. In summary, the requirement of glycolytic reprogramming for proinflammatory cytokine production in normoxia is not obvious, and effects of 2-DG on cytokine responses should be interpreted cautiously. In hypoxia, however, glycolysis becomes critical for cytokine production and cell survival.


Asunto(s)
Citocinas/metabolismo , Glucólisis/efectos de los fármacos , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Proteína Adaptadora de Señalización NOD1/agonistas , Receptor Toll-Like 4/agonistas , Animales , Carboxiliasas/metabolismo , Hipoxia de la Célula , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Desoxiglucosa/farmacología , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Monocitos/citología , Monocitos/metabolismo , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Adaptadora de Señalización NOD2/agonistas , Proteína Adaptadora de Señalización NOD2/metabolismo , Oligomicinas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Toll-Like 4/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos
9.
Int Immunopharmacol ; 77: 105980, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31699670

RESUMEN

Over-activation of microglia disrupts the physiological homeostasis of the brain, and induces inflammatory response and other processes which are implicated in neurodegenerative diseases. Therefore, theoretically, suppression of neuroinflammation would slow the progression of neurodegenerative disease. In this study, we investigated the possible protective effects of Ferulic acid (FA) against benzo(a)pyrene (BaP)-induced microglial activation using BV2 cells as the model system. Exposure of BV2 cells to BaP (10 µM) significantly increased DNA damage and the production of pro-inflammatory mediators, including nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), reactive oxygen species (ROS), malondialdehyde (MDA), and cytokines (interleukins-1ß and -6). On the other hand, when BaP-treated BV2 cells were further incubated with FA (10, 20, 40, or 80 mg/mL) for another 24 h, a significant reduction in BaP-induced DNA damage and the release of multiple pro-inflammatory and cytotoxic factors (including interleukin-1ß, interleukin-6, NO, and ROS) was observed in a dose-dependent manner. Further study revealed that the microglial NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) signaling pathway was involved in the protective effect of FA. Taken together, these results suggested that FA suppressed BaP-induced toxicity in microglia, and thus may exert neuroprotective effects by inhibiting microglia-mediated pro-inflammatory response.


Asunto(s)
Benzo(a)pireno/farmacología , Ácidos Cumáricos/farmacología , Daño del ADN/efectos de los fármacos , Inflamación/tratamiento farmacológico , Microglía/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Línea Celular , Ciclooxigenasa 2/metabolismo , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ratones , FN-kappa B/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Oxidación-Reducción/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
10.
J Virol ; 93(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31413130

RESUMEN

Dengue virus (DENV) infection causes serious clinical symptoms, including dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Vascular permeability change is the main feature of the diseases, and the abnormal expression of proinflammatory cytokines is the important cause of vascular permeability change. However, the mechanism underlying vascular permeability induced by DENV has not been fully elucidated. Here, we reveal a distinct mechanism by which DENV infection promotes NLRP3 inflammasome activation and interleukin-1 beta (IL-1ß) release to induce endothelial permeability and vascular leakage in mice. DENV M protein interacts with NLRP3 to facilitate NLRP3 inflammasome assembly and activation, which induce proinflammatory cytokine IL-1ß activation and release. Notably, M can induce vascular leakage in mouse tissues by activating the NLRP3 inflammasome and IL-1ß. More importantly, inflammatory cell infiltration and tissue injuries are induced by M in wild-type (WT) mouse tissues, but they are not affected by M in NLRP3 knockout (NLRP3-/-) mouse tissues. Evans blue intensities in WT mouse tissues are significantly higher than in NLRP3-/- mouse tissues, demonstrating an essential role of NLRP3 in M-induced vascular leakages in mice. Therefore, we propose that upon DENV infection, M interacts with NLRP3 to facilitate inflammasome activation and IL-1ß secretion, which lead to the induction of endothelial permeability and vascular leakage in mouse tissues. The important role of the DENV-M-NLRP3-IL-1ß axis in the induction of vascular leakage provides new insights into the mechanisms underlying DENV pathogenesis and DENV-associated DHF and DSS development.IMPORTANCE Dengue virus (DENV) is a mosquito-borne pathogen, and infections by this virus are prevalent in over 100 tropical and subtropical countries or regions, with approximately 2.5 billion people at risk. DENV infection induces a spectrum of clinical symptoms, ranging from classical dengue fever (DF) to severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Therefore, it is important to understand the mechanisms underlying DENV pathogenesis. In this study, we reveal that the DENV membrane protein (M) interacts with the host NLRP3 protein to promote NLRP3 inflammasome activation, which leads to the activation and release of a proinflammatory cytokine, interleukin-1 beta (IL-1ß). More importantly, we demonstrate that M protein can induce vascular permeability and vascular leakage and that NLRP3 is required for M-induced vascular leakage in mouse tissues. Collectively, this study reveals a distinct mechanism underlying DENV pathogeneses and provides new insights into the development of therapeutic agents for DENV-associated diseases.


Asunto(s)
Virus del Dengue/inmunología , Dengue/inmunología , Endotelio Vascular/inmunología , Inflamasomas/inmunología , Interleucina-1beta/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/fisiología , Proteínas de la Matriz Viral/metabolismo , Animales , Permeabilidad Capilar , Células Cultivadas , Dengue/patología , Dengue/virología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Femenino , Humanos , Inflamasomas/metabolismo , Interleucina-1beta/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Interferón alfa y beta/fisiología , Proteínas de la Matriz Viral/genética
11.
J Biol Chem ; 294(35): 13006-13016, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31296569

RESUMEN

Unconventional integrated domains in plant intracellular immune receptors of the nucleotide-binding leucine-rich repeat (NLRs) type can directly bind translocated effector proteins from pathogens and thereby initiate an immune response. The rice (Oryza sativa) immune receptor pairs Pik-1/Pik-2 and RGA5/RGA4 both use integrated heavy metal-associated (HMA) domains to bind the effectors AVR-Pik and AVR-Pia, respectively, from the rice blast fungal pathogen Magnaporthe oryzae These effectors both belong to the MAX effector family and share a core structural fold, despite being divergent in sequence. How integrated domains in NLRs maintain specificity of effector recognition, even of structurally similar effectors, has implications for understanding plant immune receptor evolution and function. Here, using plant cell death and pathogenicity assays and protein-protein interaction analyses, we show that the rice NLR pair Pikp-1/Pikp-2 triggers an immune response leading to partial disease resistance toward the "mis-matched" effector AVR-Pia in planta and that the Pikp-HMA domain binds AVR-Pia in vitro We observed that the HMA domain from another Pik-1 allele, Pikm, cannot bind AVR-Pia, and it does not trigger a plant response. The crystal structure of Pikp-HMA bound to AVR-Pia at 1.9 Å resolution revealed a binding interface different from those formed with AVR-Pik effectors, suggesting plasticity in integrated domain-effector interactions. The results of our work indicate that a single NLR immune receptor can bait multiple pathogen effectors via an integrated domain, insights that may enable engineering plant immune receptors with extended disease resistance profiles.


Asunto(s)
Magnaporthe/inmunología , Proteínas NLR/inmunología , Oryza/inmunología , Enfermedades de las Plantas/inmunología , Modelos Moleculares , Proteínas NLR/química , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Unión Proteica
12.
Parasit Vectors ; 12(1): 182, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-31023355

RESUMEN

BACKGROUND: Pattern recognition receptors (PRRs) can recognize pathogen-associated molecular patterns and activate downstream signalling pathways, resulting in modulation of host immunity against pathogens. Here, we investigated whether PRR-mediated recognition is involved in host immune responses to the blood-feeding nematode Haemonchus contortus. METHODS: During blood-feeding, H. contortus secretes immune-modulating antigens into host blood. Therefore, we stimulated sheep peripheral blood mononuclear cells (PBMCs) with H. contortus soluble extract (HcAg) and performed transcriptional profiling. RESULTS: HcAg upregulated two genetically linked CLRs (CLEC2L and KLRG2), two NLRs attenuating inflammation (NLRP12 and NLRC3) and one G protein-coupled receptor with potent anti-inflammatory effects (HCAR2). Furthermore, several Th2-related transcription factors (ATF3, IRF4, BCL3 and NFATC) were also upregulated, which may confer anti-inflammatory type 2 immune responses to HcAg. CONCLUSIONS: Together, our preliminary studies provide new insights into how the host innate immune system controls type 2 immunity to H. contortus. Further work will be needed to identify H. contortus products recognized by the host innate immune system and determine the Th2 polarization ability of these putative PRR ligands.


Asunto(s)
Hemoncosis/veterinaria , Haemonchus/química , Proteínas del Helminto/farmacología , Inmunidad Innata , Leucocitos Mononucleares/inmunología , Extractos de Tejidos/farmacología , Animales , Antígenos Helmínticos/inmunología , Perfilación de la Expresión Génica , Hemoncosis/sangre , Proteínas del Helminto/inmunología , Interacciones Huésped-Patógeno , Leucocitos Mononucleares/parasitología , Proteínas NLR/genética , Receptores de Reconocimiento de Patrones/genética , Receptores de Reconocimiento de Patrones/inmunología , Ovinos , Enfermedades de las Ovejas/inmunología , Enfermedades de las Ovejas/parasitología , Factores de Transcripción/genética
13.
J Biol Chem ; 294(22): 9007-9015, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-30996003

RESUMEN

NOD1 and NOD2 are intracellular sensors of bacterial peptidoglycan that belong to the Nod-like receptor family of innate immune proteins. In addition to their role as direct bacterial sensors, it was proposed that the nucleotide-binding oligomerization domain (NOD) proteins could detect endoplasmic reticulum (ER) stress induced by thapsigargin, an inhibitor of the sarcoplasmic or endoplasmic reticulum calcium ATPase family that pumps Ca2+ into the ER, resulting in pro-inflammatory signaling. Here, we confirm that thapsigargin induces NOD-dependent pro-inflammatory signaling in epithelial cells. However, the effect was specific to thapsigargin, as tunicamycin and the subtilase cytotoxin SubAB from Shiga toxigenic Escherichia coli, which induce ER stress by other mechanisms, did not induce cytokine expression. The calcium ionophore A23187 also induced NOD-dependent signaling, and calcium chelators demonstrated a role for both intracellular and extracellular calcium in mediating thapsigargin-induced and NOD-dependent pro-inflammatory signaling, in part through the activation of plasma membrane-associated calcium release-activated channels. Moreover, our results demonstrate that both endocytosis and the addition of serum to the cell culture medium were required for thapsigargin-mediated NOD activation. Finally, we analyzed cell culture grade fetal calf serum as well as serum from laboratory mice using HPLC and MS identified the presence of various peptidoglycan fragments. We propose that cellular perturbations that affect intracellular Ca2+ can trigger internalization of peptidoglycan trace contaminants found in culture serum, thereby stimulating pro-inflammatory signaling. The presence of peptidoglycan in animal serum suggests that a homeostatic function of NOD signaling may have been previously overlooked.


Asunto(s)
Citocinas/metabolismo , Estrés del Retículo Endoplásmico , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Adaptadora de Señalización NOD2/metabolismo , Peptidoglicano/sangre , Calcimicina/química , Calcimicina/farmacología , Calcio/química , Calcio/metabolismo , Quimiocina CXCL1/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Técnicas de Inactivación de Genes , Células HCT116 , Humanos , Interleucina-8/metabolismo , Proteína Adaptadora de Señalización NOD1/deficiencia , Proteína Adaptadora de Señalización NOD1/genética , Proteína Adaptadora de Señalización NOD2/deficiencia , Proteína Adaptadora de Señalización NOD2/genética , Transducción de Señal/efectos de los fármacos , Tapsigargina/farmacología
14.
J Biol Chem ; 293(52): 20240-20248, 2018 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-30385506

RESUMEN

Inflammasomes are supramolecular signaling platforms integral to innate immune defense against invading pathogens. The NOD-like receptor (NLR) family apoptosis inhibitory protein (NAIP)·NLR family caspase-recruiting domain (CARD) domain-containing 4 (NLRC4) inflammasome recognizes intracellular bacteria and induces the polymerization of the caspase-1 protease, which in turn executes maturation of interleukin-1ß (IL-1ß) and pyroptosis. Several high-resolution structures of the fully assembled NAIP·NLRC4 complex are available, but these structures do not resolve the architecture of the CARD filament in atomic detail. Here, we present the cryo-EM structure of the filament assembled by the CARD of human NLRC4 (NLRC4CARD) at 3.4 Å resolution. The structure revealed that the helical architecture of the NLRC4CARD filament is essentially identical to that of the downstream filament assembled by the CARD of caspase-1 (casp1CARD), but deviates from the split washer-like assembly of the NAIP·NLRC4 oligomer. Our results suggest that architectural complementarity is a major driver for the recognition between upstream and downstream CARD assemblies in inflammasomes. Furthermore, a Monte Carlo simulation of the NLRC4CARD filament assembly rationalized why an (un)decameric NLRC4 oligomer is optimal for assembling the helical base of the NLRC4CARD filament. Together, our results explain how symmetric and asymmetric supramolecular assemblies enable high-fidelity signaling in inflammasomes.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/química , Proteínas de Unión al Calcio/química , Modelos Moleculares , Complejos Multiproteicos/química , Proteína Inhibidora de la Apoptosis Neuronal/química , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas de Unión al Calcio/metabolismo , Microscopía por Crioelectrón , Humanos , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Proteína Inhibidora de la Apoptosis Neuronal/metabolismo , Estructura Cuaternaria de Proteína
15.
J Biol Chem ; 293(49): 18864-18878, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30291141

RESUMEN

The inflammasome is a critical molecular complex that activates interleukin-1 driven inflammation in response to pathogen- and danger-associated signals. Germline mutations in the inflammasome sensor NLRP1 cause Mendelian systemic autoimmunity and skin cancer susceptibility, but its endogenous regulation remains less understood. Here we use a proteomics screen to uncover dipeptidyl dipeptidase DPP9 as a novel interacting partner with human NLRP1 and a related inflammasome regulator, CARD8. DPP9 functions as an endogenous inhibitor of NLRP1 inflammasome in diverse primary cell types from human and mice. DPP8/9 inhibition via small molecule drugs and CRISPR/Cas9-mediated genetic deletion specifically activate the human NLRP1 inflammasome, leading to ASC speck formation, pyroptotic cell death, and secretion of cleaved interleukin-1ß. Mechanistically, DPP9 interacts with a unique autoproteolytic domain (Function to Find Domain (FIIND)) found in NLRP1 and CARD8. This scaffolding function of DPP9 and its catalytic activity act synergistically to maintain NLRP1 in its inactive state and repress downstream inflammasome activation. We further identified a single patient-derived germline missense mutation in the NLRP1 FIIND domain that abrogates DPP9 binding, leading to inflammasome hyperactivation seen in the Mendelian autoinflammatory disease Autoinflammation with Arthritis and Dyskeratosis. These results unite recent findings on the regulation of murine Nlrp1b by Dpp8/9 and uncover a new regulatory mechanism for the NLRP1 inflammasome in primary human cells. Our results further suggest that DPP9 could be a multifunctional inflammasome regulator involved in human autoinflammatory diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Inflamasomas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/genética , Ácidos Borónicos/farmacología , Proteínas Adaptadoras de Señalización CARD/metabolismo , Dipéptidos/farmacología , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Mutación de Línea Germinal , Células HEK293 , Humanos , Inflamación/genética , Mutación Missense , Proteínas NLR , Proteínas de Neoplasias/metabolismo , Unión Proteica , Dominios Proteicos
16.
J Biol Chem ; 293(8): 2701-2710, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29301940

RESUMEN

Mammalian Nod-like receptor (NLR) proteins contribute to the regulation and induction of innate and adaptive immunity in mammals, although the function of about half of the currently identified NLR proteins remains poorly characterized. Here we analyzed the function of the primate-specific NLRP11 gene product. We show that NLRP11 is highly expressed in immune cells, including myeloid cells, B cells, and some B cell lymphoma lines. Overexpression of NLRP11 in human cells did not trigger key innate immune signaling pathways, including NF-κB and type I interferon responses. NLRP11 harbors a pyrin domain, which is responsible for inflammasome formation in related NLR proteins. However, NLRP11 did not interact with the inflammasome adaptor protein ASC, and it did not trigger caspase-1 activation. By contrast, expression of NLRP11 specifically repressed NF-κB and type I interferon responses, two key innate immune pathways involved in inflammation. This effect was independent of the pyrin domain and ATPase activity of NLRP11. siRNA-mediated knockdown of NLRP11 in human myeloid THP1 cells validated these findings and revealed enhanced lipopolysaccharide and Sendai virus-induced cytokine and interferon responses, respectively, in cells with reduced NLRP11 expression. In summary, our work identifies a novel role of NLRP11 in the regulation of inflammatory responses in human cells.


Asunto(s)
Linfocitos B/metabolismo , Regulación hacia Abajo , Regulación de la Expresión Génica , Inmunidad Innata , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Mieloides/metabolismo , Proteínas NLR/metabolismo , Sustitución de Aminoácidos , Linfocitos B/citología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Línea Celular Transformada , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros/efectos de los fármacos , Humanos , Inmunidad Innata/efectos de los fármacos , Interferón Tipo I/agonistas , Interferón Tipo I/antagonistas & inhibidores , Interferón Tipo I/metabolismo , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Lipopolisacáridos/toxicidad , Masculino , Mutación , Células Mieloides/citología , Células Mieloides/efectos de los fármacos , Células Mieloides/inmunología , FN-kappa B/agonistas , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Proteínas NLR/genética , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Especificidad de Órganos , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
17.
Am J Obstet Gynecol ; 218(3): 294-314.e2, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29248470

RESUMEN

Evidence from family and twin-based studies provide strong support for a significant contribution of maternal and fetal genetics to the timing of parturition and spontaneous preterm birth. However, there has been only modest success in the discovery of genes predisposing to preterm birth, despite increasing sophistication of genetic and genomic technology. In contrast, DNA variants associated with other traits/diseases have been identified. For example, there is overwhelming evidence that suggests that the nature and intensity of an inflammatory response in adults and children are under genetic control. Because inflammation is often invoked as an etiologic factor in spontaneous preterm birth, the question of whether spontaneous preterm birth has a genetic predisposition in the case of pathologic inflammation has been of long-standing interest to investigators. Here, we review various genetic approaches used for the discovery of preterm birth genetic variants in the context of inflammation-associated spontaneous preterm birth. Candidate gene studies have sought genetic variants that regulate inflammation in the mother and fetus; however, the promising findings have often not been replicated. Genome-wide association studies, an approach to the identification of chromosomal loci responsible for complex traits, have also not yielded compelling evidence for DNA variants predisposing to preterm birth. A recent genome-wide association study that included a large number of White women (>40,000) revealed that maternal loci contribute to preterm birth. Although none of these loci harbored genes directly related to innate immunity, the results were replicated. Another approach to identify DNA variants predisposing to preterm birth is whole exome sequencing, which examines the DNA sequence of protein-coding regions of the genome. A recent whole exome sequencing study identified rare mutations in genes encoding for proteins involved in the negative regulation (dampening) of the innate immune response (eg, CARD6, CARD8, NLRP10, NLRP12, NOD2, TLR10) and antimicrobial peptide/proteins (eg, DEFB1, MBL2). These findings support the concept that preterm labor, at least in part, has an inflammatory etiology, which can be induced by pathogens (ie, intraamniotic infection) or "danger signals" (alarmins) released during cellular stress or necrosis (ie, sterile intraamniotic inflammation). These findings support the notion that preterm birth has a polygenic basis that involves rare mutations or damaging variants in multiple genes involved in innate immunity and host defense mechanisms against microbes and their noxious products. An overlap among the whole exome sequencing-identified genes and other inflammatory conditions associated with preterm birth, such as periodontal disease and inflammatory bowel disease, was observed, which suggests a shared genetic substrate for these conditions. We propose that whole exome sequencing, as well as whole genome sequencing, is the most promising approach for the identification of functionally significant genetic variants responsible for spontaneous preterm birth, at least in the context of pathologic inflammation. The identification of genes that contribute to preterm birth by whole exome sequencing, or whole genome sequencing, promises to yield valuable population-specific biomarkers to identify the risk for spontaneous preterm birth and potential strategies to mitigate such a risk.


Asunto(s)
Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Inflamación/genética , Nacimiento Prematuro/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Inmunidad Innata/genética , Inflamación/complicaciones , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Periodontales/genética , Embarazo , Nacimiento Prematuro/etiología
18.
Front Immunol ; 8: 1409, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163487

RESUMEN

The flavonoid baicalin has been reported to possess potent anti-inflammatory activities by suppressing inflammatory signaling pathways. However, whether baicalin can suppress the activation of NOD-like receptor (NLR) family, pyrin containing domain 3 (NLRP3) inflammasome in macrophages is largely unknown. Here, we showed that baicalin treatment dose-dependently inhibited adenosine triphosphate (ATP) or nigericin-induced NLRP3 inflammasome activation, as revealed by the decreased release of mature interleukin (IL)-1ß, active caspase-1p10, and high-mobility group box-1 protein from lipopolysaccharide (LPS)-primed bone marrow-derived macrophages. The formation of ASC specks, a critical marker of NLRP3 inflammasome assembly, was robustly inhibited by baicalin in the macrophages upon ATP or nigericin stimulation. All these inhibitory effects of baicalin could be partly reversed by MDL12330A or H89, both of which are inhibitors of the protein kinase A (PKA) signaling pathway. Consistent with this, baicalin strongly enhanced PKA-mediated phosphorylation of NLRP3, which has been suggested to prevent ASC recruitment into the inflammasome. Of note, the PKA inhibitor H89 could block baicalin-induced NLRP3 phosphorylation on PKA-specific sites, further supporting PKA's role in this process. In addition, we showed that when administered pre and post exposure to Escherichia coli infection baicalin treatment significantly improved mouse survival in bacterial sepsis. Baicalin administration also significantly reduced IL-1ß levels in the sera of bacterial infected mice. Altogether, our results revealed that baicalin inhibited NLRP3 inflammasome activation at least partly through augmenting PKA signaling, highlighting its therapeutic potential for the treatment of NLRP3-related inflammatory diseases.

19.
Adv Exp Med Biol ; 960: 327-343, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28585206

RESUMEN

Obesity is characterized by the chronic low-grade activation of the innate immune system. In this respect, macrophage-elicited metabolic inflammation and adipocyte-macrophage interaction has a primary importance in obesity. Large amounts of macrophages are accumulated by different mechanisms in obese adipose tissue. Hypertrophic adipocyte-derived chemotactic monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2) pathway also promotes more macrophage accumulation into the obese adipose tissue. However, increased local extracellular lipid concentrations is a final mechanism for adipose tissue macrophage accumulation. A paracrine loop involving free fatty acids and tumor necrosis factor-alpha (TNF-alpha) between adipocytes and macrophages establishes a vicious cycle that aggravates inflammatory changes in the adipose tissue. Adipocyte-specific caspase-1 and production of interleukin-1beta (IL-1beta) by macrophages; both adipocyte and macrophage induction by toll like receptor-4 (TLR4) through nuclear factor-kappaB (NF-kappaB) activation; free fatty acid-induced and TLR-mediated activation of c-Jun N-terminal kinase (JNK)-related pro-inflammatory pathways in CD11c+ immune cells; are effective in macrophage accumulation and in the development of adipose tissue inflammation. Old adipocytes are removed by macrophages through trogocytosis or sending an "eat me" signal. The obesity-induced changes in adipose tissue macrophage numbers are mainly due to increases in the triple-positive CD11b+ F4/80+ CD11c+ adipose tissue macrophage subpopulation. The ratio of M1-to-M2 macrophages is increased in obesity. Furthermore, hypoxia along with higher concentrations of free fatty acids exacerbates macrophage-mediated inflammation in obesity. The metabolic status of adipocytes is a major determinant of macrophage inflammatory output. Macrophage/adipocyte fatty-acid-binding proteins act at the interface of metabolic and inflammatory pathways. Both macrophages and adipocytes are the sites for active lipid metabolism and signaling.


Asunto(s)
Adipocitos/patología , Macrófagos/patología , Obesidad/patología , Tejido Adiposo/patología , Animales , Humanos , Inflamación/patología , Transducción de Señal/fisiología
20.
Brain Behav Immun ; 64: 220-231, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28432035

RESUMEN

Cerebral pericytes are mural cells embedded in the basement membrane of capillaries. Increasing evidence suggests that they play important role in controlling neurovascular functions, i.e. cerebral blood flow, angiogenesis and permeability of the blood-brain barrier. These cells can also influence neuroinflammation which is highly regulated by the innate immune system. Therefore, we systematically tested the pattern recognition receptor expression of brain pericytes. We detected expression of NOD1, NOD2, NLRC5, NLRP1-3, NLRP5, NLRP9, NLRP10 and NLRX mRNA in non-treated cells. Among the ten known human TLRs, TLR2, TLR4, TLR5, TLR6 and TLR10 were found to be expressed. Inflammatory mediators induced the expression of NLRA, NLRC4 and TLR9 and increased the levels of NOD2, TLR2, inflammasome-forming caspases and inflammasome-cleaved interleukins. Oxidative stress, on the other hand, upregulated expression of TLR10 and NLRP9. Activation of selected pattern recognition receptors can lead to inflammasome assembly and caspase-dependent secretion of IL-1ß. TNF-α and IFN-γ increased the levels of pro-IL-1ß and pro-caspase-1 proteins; however, no canonical activation of NLRP1, NLRP2, NLRP3 or NLRC4 inflammasomes could be observed in human brain vascular pericytes. On the other hand, we could demonstrate secretion of active IL-1ß in response to non-canonical inflammasome activation, i.e. intracellular LPS or infection with E. coli bacteria. Our in vitro results indicate that pericytes might have an important regulatory role in neuroinflammation.


Asunto(s)
Encéfalo/metabolismo , Inflamasomas/metabolismo , Pericitos/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Interleucina-1beta/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA