Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Environ Sci Technol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133232

RESUMEN

Irradiation at far ultraviolet C (far-UVC) 222 nm by krypton chloride (KrCl*) excilamps can enhance microbial disinfection and micropollutant photolysis/oxidation. However, nitrate/nitrite, which absorbs strongly at 222 nm, may affect the formation of disinfection byproducts (DBPs). Herein, we evaluated model organic matter and real water samples and observed a substantial increase in the formation potential for trichloronitromethane (chloropicrin) (TCNM-FP), a nitrogenous DBP, by nitrate or nitrite after irradiation at 222 nm. At a disinfection dose of 100 mJ·cm-2, TCNM-FP of humic acids and fulvic acids increased from ∼0.4 to 25 and 43 µg·L-1, respectively, by the presence of 10 mg-N·L-1 nitrate. For the effect of nitrate concentration, the TCNM-FP peak was observed at 5-10 mg-N·L-1. Stronger fluence caused a greater increase of TCNM-FP. Similarly, the increase of TCNM-FP was also observed for wastewater and drinking water samples containing nitrate. Pretreatment using ozonation and coagulation, flocculation, and filtration or the addition of H2O2 can effectively control TCNM-FP. The formation potential of other DBPs was minorly affected by irradiation at 222 nm regardless of whether nitrate/nitrite was present. Overall, far-UVC 222 nm treatment poses the risk of increasing TCNM-FP of waters containing nitrate or nitrite at environmentally relevant concentrations and the mitigation strategies merit further research.

2.
Free Radic Biol Med ; 222: 519-530, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38972612

RESUMEN

BACKGROUND: Vascular oxidative stress and low-grade inflammation are important in the pathology of cardiovascular disorders, including hypertension. Cell culture and animal studies suggest that inorganic dietary nitrate may attenuate oxidative stress and inflammation through nitric oxide (NO), and there is a need to investigate whether this translates to humans. AIM: In this randomised, placebo-controlled crossover study, by measuring a combination of multiple blood biomarkers, we evaluated whether previously reported benefits of dietary nitrate translate to a reduced oxidative stress and an improved inflammation status in 15 men and women (age range: 56-71 years) with treated hypertension. METHODS: We investigated the effects of a single ∼400 mg-dose of nitrate at 3 h post-ingestion (3H POST) and the daily consumption of 2 × âˆ¼400 mg of nitrate over 4 weeks (4WK POST), through nitrate-rich versus nitrate-depleted (placebo) beetroot juice. Measurements included plasma nitrate and nitrite (NOx), oxidised low-density lipoprotein (oxLDL), F2-isoprostanes, protein carbonyls, oxidised (GSSG) and reduced glutathione (GSH); and serum high-sensitive C-reactive protein (hsCRP), chemokines, cytokines, and adhesion molecules. Flow cytometry was used to assess the relative proportion of blood monocyte subsets. RESULTS: At 4WK POST nitrate intervention, the oxLDL/NOx ratio decreased (mainly due to increases in plasma nitrate and nitrite) and the GSH/GSSG ratio (a sensitive biomarker for alterations in the redox status) increased, compared with placebo (for both ratios P < 0.01). The relative proportion of classical (CD14+CD16-) monocytes decreased at 4WK POST for placebo compared to nitrate intervention (P < 0.05). Other oxidative stress and inflammatory markers were not altered by increased nitrate intake relative to placebo. CONCLUSIONS: The data from this study point toward a subtle alteration in the redox balance toward a less pro-oxidative profile by a regular intake of inorganic nitrate from plant foods. CLINICAL TRIAL REGISTRY NUMBER: NCT04584372 (ClinicialTrials.gov).


Asunto(s)
Beta vulgaris , Biomarcadores , Estudios Cruzados , Jugos de Frutas y Vegetales , Hipertensión , Inflamación , Nitratos , Estrés Oxidativo , Humanos , Estrés Oxidativo/efectos de los fármacos , Masculino , Persona de Mediana Edad , Femenino , Anciano , Beta vulgaris/química , Nitratos/sangre , Biomarcadores/sangre , Inflamación/sangre , Inflamación/dietoterapia , Inflamación/tratamiento farmacológico , Hipertensión/dietoterapia , Hipertensión/sangre , Hipertensión/tratamiento farmacológico , Lipoproteínas LDL/sangre , Nitritos/sangre , Proteína C-Reactiva/metabolismo
3.
Water Res ; 257: 121739, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728778

RESUMEN

The coupling between anammox and nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) has been considered a sustainable technology for nitrogen removal from sidestream wastewater and can be implemented in both membrane biofilm reactor (MBfR) and granular bioreactor. However, the potential influence of the accompanying hydrogen sulfide (H2S) in the anaerobic digestion (AD)-related methane-containing mixture on anammox/n-DAMO remains unknown. To fill this gap, this work first constructed a model incorporating the C/N/S-related bioprocesses and evaluated/calibrated/validated the model using experimental data. The model was then used to explore the impact of H2S on the MBfR and granular bioreactor designed to perform anammox/n-DAMO at practical levels (i.e., 0∼5% (v/v) and 0∼40 g/S m3, respectively). The simulation results indicated that H2S in inflow gas did not significantly affect the total nitrogen (TN) removal of the MBfR under all operational conditions studied in this work, thus lifting the concern about applying AD-produced biogas to power up anammox/n-DAMO in the MBfR. However, the presence of H2S in the influent would either compromise the treatment performance of the granular bioreactor at a relatively high influent NH4+-N/NO2--N ratio (e.g., >1.0) or lead to increased energy demand associated with TN removal at a relatively low influent NH4+-N/NO2--N ratio (e.g., <0.7). Such a negative effect of the influent H2S could not be attenuated by regulating the hydraulic residence time and should therefore be avoided when applying the granular bioreactor to perform anammox/n-DAMO in practice.


Asunto(s)
Reactores Biológicos , Sulfuro de Hidrógeno , Metano , Nitratos , Nitritos , Oxidación-Reducción , Sulfuro de Hidrógeno/metabolismo , Anaerobiosis , Metano/metabolismo , Nitratos/metabolismo , Eliminación de Residuos Líquidos/métodos , Nitrógeno/metabolismo , Aguas Residuales/química
4.
Front Physiol ; 15: 1352242, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784116

RESUMEN

Introduction: Nitric oxide (NO) is a vasodilator gas that plays a critical role in mitochondrial respiration and skeletal muscle function. NO is endogenously generated by NO synthases: neuronal NO synthase (nNOS), endothelial NO synthase (eNOS), or inducible NO synthase (iNOS). NO in skeletal muscle is partly generated by nNOS, and nNOS deficiency can contribute to muscular dystrophic diseases. However, we and others discovered an alternative nitrate/nitrite reductive pathway for NO generation: nitrate to nitrite to NO. We hypothesized that nitrate supplementation would increase nitrate accumulation in skeletal muscle and promote a nitrate/nitrite reductive pathway for NO production to compensate for the loss of nNOS in skeletal muscle. Methods: Wild-type (WT) and genetic nNOS knockout (nNOS-/-) mice were fed normal chow (386.9 nmol/g nitrate) and subjected to three treatments: high-nitrate water (1 g/L sodium nitrate for 7 days), low-nitrate diet (46.8 nmol/g nitrate for 7 days), and low-nitrate diet followed by high-nitrate water for 7 days each. Results: High-nitrate water supplementation exhibited a greater and more significant increase in nitrate levels in skeletal muscle and blood in nNOS-/- mice than in WT mice. A low-nitrate diet decreased blood nitrate and nitrite levels in both WT and nNOS-/- mice. WT and nNOS-/- mice, treated with low-nitrate diet, followed by high-nitrate water supplementation, showed a significant increase in nitrate levels in skeletal muscle and blood, analogous to the increases observed in nNOS-/- mice supplemented with high-nitrate water. In skeletal muscle of nNOS-/- mice on high-nitrate water supplementation, on low-nitrate diet, and in low-high nitrate treatment, the loss of nNOS resulted in a corresponding increase in the expression of nitrate/nitrite reductive pathway-associated nitrate transporters [sialin and chloride channel 1 (CLC1)] and nitrate/nitrite reductase [xanthine oxidoreductase (XOR)] but did not show a compensatory increase in iNOS or eNOS protein and eNOS activation activity [p-eNOS (Ser1177)]. Discussion: These findings suggest that a greater increase in nitrate levels in skeletal muscle of nNOS-/- mice on nitrate supplementation results from reductive processes to increase NO production with the loss of nNOS in skeletal muscle.

5.
Environ Res ; 255: 119209, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38782336

RESUMEN

Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) process is a promising wastewater treatment technology, but the slow microbial growth rate greatly hinders its practical application. Although high-level nitrogen removal and excellent biomass accumulation have been achieved in n-DAMO granule process, the formation mechanism of n-DAMO granules remains unresolved. To elucidate the role of functional microbes in granulation, this study attempted to cultivate granules dominated by n-DAMO microorganisms and granules coupling n-DAMO with anaerobic ammonium oxidation (Anammox). After long-term operation, dense granules were developed in the two systems where both n-DAMO archaea and n-DAMO bacteria were enriched, whereas granulation did not occur in the other system dominated by n-DAMO bacteria. Extracellular polymeric substances (EPS) measurement indicated the critical role of EPS production in the granulation of n-DAMO process. Metagenomic and metatranscriptomic analyses revealed that n-DAMO archaea and Anammox bacteria were active in EPS biosynthesis, while n-DAMO bacteria were inactive. Consequently, more EPS were produced in the systems containing n-DAMO archaea and Anammox bacteria, leading to the successful development of n-DAMO granules. Furthermore, EPS biosynthesis in n-DAMO systems is potentially regulated by acyl-homoserine lactones and c-di-GMP. These findings not only provide new insights into the mechanism of granule formation in n-DAMO systems, but also hint at potential strategies for management of the granule-based n-DAMO process.


Asunto(s)
Archaea , Bacterias , Oxidación-Reducción , Archaea/metabolismo , Archaea/genética , Anaerobiosis , Bacterias/metabolismo , Bacterias/genética , Metano/metabolismo , Eliminación de Residuos Líquidos/métodos , Nitratos/metabolismo , Compuestos de Amonio/metabolismo , Nitritos/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Reactores Biológicos/microbiología , Aguas Residuales/microbiología
6.
Water Res ; 256: 121567, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38581983

RESUMEN

Discovery of nitrate/nitrite-dependent anaerobic methane oxidation (DAMO) challenges the conventional biological treatment processes, since it provides a possibility of simultaneously mitigating dissolved methane emissions from anaerobic effluents and reducing additional carbon sources for denitrification. Due to the slow growth of specialized DAMO microbes, this possibility has been just practiced with biofilms in membrane biofilm reactors or granular sludge in membrane bioreactors. In this study, simultaneous elimination of dissolved methane from anaerobic effluents and nitrate/nitrite reduction was achieved in a conventional anoxic reactor with magnetite. Calculations of electron flow balance showed that, with magnetite the eliminated dissolved methane was almost entirely used for nitrate/nitrite reduction, while without magnetite approximately 52 % of eliminated dissolved methane was converted to unknown organics. Metagenomic sequencing showed that, when dissolved methane served as an electron donor, the abundance of genes for reverse methanogenesis and denitrification dramatically increased, indicating that anaerobic oxidation of methane (AOM) coupled to nitrate/nitrite reduction occurred. Magnetite increased the abundance of genes encoding the key enzymes involved in whole reverse methanogenesis and Nir and Nor involved in denitrification, compared to that without magnetite. Analysis of microbial communities showed that, AOM coupled to nitrate/nitrite reduction was proceeded by syntrophic consortia comprised of methane oxidizers, Methanolinea and Methanobacterium, and nitrate/nitrite reducers, Armatimonadetes_gp5 and Thauera. With magnetite syntrophic consortia exchanged electrons more effectively than that without magnetite, further supporting the microbial growth.


Asunto(s)
Reactores Biológicos , Óxido Ferrosoférrico , Metano , Nitratos , Nitritos , Metano/metabolismo , Anaerobiosis , Nitratos/metabolismo , Óxido Ferrosoférrico/química , Nitritos/metabolismo , Oxidación-Reducción , Desnitrificación
7.
Front Microbiol ; 15: 1366111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38591044

RESUMEN

PII proteins are signal transduction proteins that belong to a widely distributed family of proteins involved in the modulation of different metabolisms in bacteria. These proteins are homotrimers carrying a flexible loop, named T-loop, which changes its conformation due to the recognition of diverse key metabolites, ADP, ATP, and 2-oxoglutarate. PII proteins interact with different partners to primarily regulate a set of nitrogen pathways. In some organisms, PII proteins can also control carbon metabolism by interacting with the biotin carboxyl carrier protein (BCCP), a key component of the acetyl-CoA carboxylase (ACC) enzyme complex, inhibiting its activity with the consequent reduction of fatty acid biosynthesis. Most bacteria contain at least two PII proteins, named GlnB and GlnK, with different regulatory roles. In mycobacteria, only one PII protein was identified, and the three-dimensional structure was solved, however, its physiological role is unknown. In this study we purified the Mycobacterium tuberculosis (M. tb) PII protein, named GlnB, and showed that it weakly interacts with the AccA3 protein, the α subunit shared by the three different, and essential, Acyl-CoA carboxylase complexes (ACCase 4, 5, and 6) present in M. tb. A M. smegmatis deletion mutant, ∆MsPII, exhibited a growth deficiency on nitrate and nitrite as unique nitrogen sources, and accumulated nitrite in the culture supernatant. In addition, M. tb PII protein was able to interact with the C-terminal domain of the ammonium transporter Amt establishing the ancestral role for this PII protein as a GlnK functioning protein.

8.
Arch Microbiol ; 206(4): 179, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38498215

RESUMEN

Sediments underlying marine hypoxic zones are huge sinks of unreacted complex organic matter, where despite acute O2 limitation, obligately aerobic bacteria thrive, and steady depletion of organic carbon takes place within a few meters below the seafloor. However, little knowledge exists about the sustenance and complex carbon degradation potentials of aerobic chemoorganotrophs in these sulfidic ecosystems. We isolated and characterized a number of aerobic bacterial chemoorganoheterotrophs from across a ~ 3 m sediment horizon underlying the perennial hypoxic zone of the eastern Arabian Sea. High levels of sequence correspondence between the isolates' genomes and the habitat's metagenomes and metatranscriptomes illustrated that the strains were widespread and active across the sediment cores explored. The isolates catabolized several complex organic compounds of marine and terrestrial origins in the presence of high or low, but not zero, O2. Some of them could also grow anaerobically on yeast extract or acetate by reducing nitrate and/or nitrite. Fermentation did not support growth, but enabled all the strains to maintain a fraction of their cell populations over prolonged anoxia. Under extreme oligotrophy, limited growth followed by protracted stationary phase was observed for all the isolates at low cell density, amid high or low, but not zero, O2 concentration. While population control and maintenance could be particularly useful for the strains' survival in the critically carbon-depleted layers below the explored sediment depths (core-bottom organic carbon: 0.5-1.0% w/w), metagenomic data suggested that in situ anoxia could be surmounted via potential supplies of cryptic O2 from previously reported sources such as Nitrosopumilus species.


Asunto(s)
Ecosistema , Oxígeno , Humanos , Oxígeno/metabolismo , Sedimentos Geológicos/microbiología , Carbono/metabolismo , Bacterias , Hipoxia
9.
Proc Natl Acad Sci U S A ; 121(11): e2318320121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38457518

RESUMEN

Coordinated carbon and nitrogen metabolism is crucial for bacteria living in the fluctuating environments. Intracellular carbon and nitrogen homeostasis is maintained by a sophisticated network, in which the widespread signaling protein PII acts as a major regulatory hub. In cyanobacteria, PII was proposed to regulate the nitrate uptake by an ABC (ATP-binding cassette)-type nitrate transporter NrtABCD, in which the nucleotide-binding domain of NrtC is fused with a C-terminal regulatory domain (CRD). Here, we solved three cryoelectron microscopy structures of NrtBCD, bound to nitrate, ATP, and PII, respectively. Structural and biochemical analyses enable us to identify the key residues that form a hydrophobic and a hydrophilic cavity along the substrate translocation channel. The core structure of PII, but not the canonical T-loop, binds to NrtC and stabilizes the CRD, making it visible in the complex structure, narrows the substrate translocation channel in NrtB, and ultimately locks NrtBCD at an inhibited inward-facing conformation. Based on these results and previous reports, we propose a putative transport cycle driven by NrtABCD, which is allosterically inhibited by PII in response to the cellular level of 2-oxoglutarate. Our findings provide a distinct regulatory mechanism of ABC transporter via asymmetrically binding to a signaling protein.


Asunto(s)
Cianobacterias , Transportadores de Nitrato , Nitratos/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Alostérica , Microscopía por Crioelectrón , Cianobacterias/metabolismo , Adenosina Trifosfato/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Proteínas PII Reguladoras del Nitrógeno/genética , Proteínas PII Reguladoras del Nitrógeno/metabolismo
10.
Environ Res ; 252(Pt 1): 118810, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552829

RESUMEN

Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) process offers a promising solution for simultaneously achieving methane emissions reduction and efficient nitrogen removal in wastewater treatment. Although nitrogen removal at a practical rate has been achieved by n-DAMO biofilm process, the mechanisms of biofilm formation and nitrogen transformation remain to be elucidated. In this study, n-DAMO biofilms were successfully developed in the membrane aerated moving bed biofilm reactor (MAMBBR) and removed nitrate at a rate of 159 mg NO3--N L-1 d-1. The obvious increase in the content of extracellular polymeric substances (EPS) indicated that EPS production was important for biofilm development. n-DAMO microorganisms dominated the microbial community, and n-DAMO bacteria were the most abundant microorganisms. However, the expression of biosynthesis genes for proteins and polysaccharides encoded by n-DAMO archaea was significantly more active compared to other microorganisms, suggesting the central role of n-DAMO archaea in EPS production and biofilm formation. In addition to nitrate reduction, n-DAMO archaea were revealed to actively express dissimilatory nitrate reduction to ammonium and nitrogen fixation. The produced ammonium was putatively converted to dinitrogen gas through the joint function of n-DAMO archaea and n-DAMO bacteria. This study revealed the biofilm formation mechanism and nitrogen-transformation network in n-DAMO biofilm systems, shedding new light on promoting the application of n-DAMO process.


Asunto(s)
Biopelículas , Reactores Biológicos , Metano , Nitratos , Oxidación-Reducción , Biopelículas/crecimiento & desarrollo , Metano/metabolismo , Anaerobiosis , Nitratos/metabolismo , Reactores Biológicos/microbiología , Nitrógeno/metabolismo , Archaea/metabolismo , Archaea/genética , Archaea/fisiología , Bacterias/metabolismo , Bacterias/genética , Eliminación de Residuos Líquidos/métodos
11.
Heliyon ; 10(1): e23603, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38226232

RESUMEN

The regression relationship between water discharge rates and nutrient concentrations can provide a quick and straightforward way to estimate nutrient loads. However, recent studies indicated that the relationship might produce large biases in load estimates and, therefore, may not be applicable in certain types of cases. The goal of this study is to explore the theoretical reasons behind the selective applicability of the regression relationship between flow rates and nitrate + nitrite concentrations. For this study, we examined daily flow and nitrate + nitrite concentration observations made at the outlets of 22 watersheds monitored by the Heidelberg Tributary Loading Program (HTLP). The statistical relationship between the flow rates and concentrations was explored using regression equations offered by the LOAD ESTimator (LOADEST). Results demonstrated that the use of the regression equations provided nitrate + nitrite load estimates at acceptable accuracy levels (NSE≥0.35 and |PBIAS|≤30.0%) in 14 watersheds (64 % of 22 study watersheds). The regression relationships provided highly biased results at eight watersheds (36 %), implying their limited applicability. The heteroscedasticity of the residuals led to the high bias and resulting inaccurate regression, which was commonly found in watersheds where low flow had high nitrate + nitrite concentration variations. Conversely, the regression relationships provided acceptable accuracy for watersheds that had a relatively constant variance of the nitrate + nitrite concentrations. The results indicate that the homoscedasticity of residuals is the key assumption to be satisfied to estimate nitrate + nitrite loads from a statistical regression between flow discharge and nitrate + nitrite concentrations. The transport capacity (capacity-limited) concept implicitly assumed in the regression relationship between flow discharge and nitrate + nitrite concentrations is not always applicable, especially to agricultural areas in which nitrate + nitrite loads are highly variable depending on management practices (supply-limited). The findings suggest that the regression relationship should be carefully applied to areas in which intensive agricultural activities, including crop management and conservation practices, are implemented. Thus, the transport capacity concept is reasonably regarded to contribute to the homoscedasticity of residuals.

12.
ACS Nano ; 17(23): 23637-23648, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37979042

RESUMEN

Electrocatalytic nitrate (NO3-)/nitrite (NO2-) reduction reaction (eNOx-RR) to ammonia under ambient conditions presents a green and promising alternative to the Haber-Bosch process. Practically available NOx- sources, such as wastewater or plasma-enabled nitrogen oxidation reaction (p-NOR), typically have low NOx- concentrations. Hence, electrocatalyst engineering is important for practical eNOx-RR to obtain both high NH3 Faradaic efficiency (FE) and high yield rate. Herein, we designed balanced NOx- and proton adsorption by properly introducing Cu sites into the Fe/Fe2O3 electrocatalyst. During the eNOx-RR process, the H adsorption is balanced, and the good NOx- affinity is maintained. As a consequence, the designed Cu-Fe/Fe2O3 catalyst exhibits promising performance, with an average NH3 FE of ∼98% and an average NH3 yield rate of 15.66 mg h-1 cm-2 under the low NO3- concentration (32.3 mM) of typical industrial wastewater at an applied potential of -0.6 V versus reversible hydrogen electrode (RHE). With low-power direct current p-NOR generated NOx- (23.5 mM) in KOH electrolyte, the Cu-Fe/Fe2O3 catalyst achieves an FE of ∼99% and a yield rate of 15.1 mg h-1 cm-2 for NH3 production at -0.5 V (vs RHE). The performance achieved in this study exceeds industrialization targets for NH3 production by exploiting two available low-concentration NOx- sources.

13.
Environ Sci Technol ; 57(50): 20975-20991, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37931214

RESUMEN

Nitrate/nitrite-dependent anaerobic oxidation of methane (n-DAMO) is a recently discovered process, which provides a sustainable perspective for simultaneous nitrogen removal and greenhouse gas emission (GHG) mitigation by using methane as an electron donor for denitrification. However, the engineering roadmap of the n-DAMO process is still unclear. This work constitutes a state-of-the-art review on the classical and most recently discovered metabolic mechanisms of the n-DAMO process. The versatile combinations of the n-DAMO process with nitrification, nitritation, and partial nitritation for nitrogen removal are also clearly presented and discussed. Additionally, the recent advances in bioreactor development are systematically reviewed and evaluated comprehensively in terms of methane supply, biomass retention, membrane requirement, startup time, reactor performance, and limitations. The key issues including enrichment and operation strategy for the scaling up of n-DAMO-based processes are also critically addressed. Moreover, the challenges inherent to implementing the n-DAMO process in practical applications, including application scenario recognition, GHG emission mitigation, and operation under realistic conditions, are highlighted. Finally, prospects as well as opportunities for future research are proposed. Overall, this review provides a roadmap for potential applications and further development of the n-DAMO process in the field of wastewater treatment.


Asunto(s)
Compuestos de Amonio , Nitratos , Nitratos/metabolismo , Nitritos/metabolismo , Nitrificación , Anaerobiosis , Metano , Desnitrificación , Compuestos de Amonio/metabolismo , Oxidación-Reducción , Reactores Biológicos , Nitrógeno/metabolismo
14.
Redox Biol ; 67: 102864, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37713777

RESUMEN

Several rare genetic variations of human XDH have been shown to alter xanthine oxidoreductase (XOR) activity leading to impaired purine catabolism. However, XOR is a multi-functional enzyme that depending upon the environmental conditions also expresses oxidase activity leading to both O2·- and H2O2 and nitrite (NO2-) reductase activity leading to nitric oxide (·NO). Since these products express important, and often diametrically opposite, biological activity, consideration of the impact of XOR mutations in the context of each aspect of the biochemical activity of the enzyme is needed to determine the potential full impact of these variants. Herein, we show that known naturally occurring hXDH mutations do not have a uniform impact upon the biochemical activity of the enzyme in terms of uric acid (UA), reactive oxygen species (ROS) and nitric oxide ·NO formation. We show that the His1221Arg mutant, in the presence of xanthine, increases UA, O2·- and NO generation compared to the WT, whilst the Ile703Val increases UA and ·NO formation, but not O2·-. We speculate that this change in the balance of activity of the enzyme is likely to endow those carrying these mutations with a harmful or protective influence over health that may explain the current equipoise underlying the perceived importance of XDH mutations. We also show that, in presence of inorganic NO2-, XOR-driven O2·- production is substantially reduced. We suggest that targeting enzyme activity to enhance the NO2--reductase profile in those carrying such mutations may provide novel therapeutic options, particularly in cardiovascular disease.


Asunto(s)
Nitritos , Xantina Deshidrogenasa , Humanos , Xantina Deshidrogenasa/genética , Xantina Deshidrogenasa/metabolismo , Nitritos/metabolismo , Óxido Nítrico/metabolismo , Oxidorreductasas/metabolismo , Dióxido de Nitrógeno , Peróxido de Hidrógeno , Oxidación-Reducción , Ácido Úrico/metabolismo , Mutación , Xantina Oxidasa/metabolismo
15.
BMC Microbiol ; 23(1): 210, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543572

RESUMEN

BACKGROUND: A wide variety of microorganisms, including bacteria, live in the rhizosphere zone of plants and have an impact on plant development both favorably and adversely. The beneficial outcome is due to the presence of rhizobacteria that promote plant growth (PGPR). RESULTS: In this study, a bacterial strain was isolated from lupin rhizosphere and identified genetically as Serratia marcescens (OK482790). Several biochemically and genetically characteristics were confirmed in vitro and in vivo to determine the OK482790 strain ability to be PGPR. The in vitro results revealed production of different lytic enzymes (protease, lipase, cellulase, and catalase), antimicrobial compounds (hydrogen cyanide, and siderophores), ammonia, nitrite, and nitrate and its ability to reduce nitrate to nitrite. In silico and in vitro screening proposed possible denitrification-DNRA-nitrification pathway for OK482790 strain. The genome screening indicated the presence of nitrite and nitrate genes encoding Nar membrane bound sensor proteins (NarK, NarQ and NarX). Nitrate and nitrite reductase encoding genes (NarI, NarJ, NarH, NarG and NapC/NirT) and (NirB, NirC, and NirD) are also found in addition to nitroreductases (NTR) and several oxidoreductases. In vivo results on wheat seedlings confirmed that seedlings growth was significantly improved by soil inoculation of OK482790 strain. CONCLUSIONS: This study provides evidence for participation of S. marcescens OK482790 in nitrogen cycling via the denitrification-DNRA-nitrification pathway and for its ability to produce several enzymes and compounds that support the beneficial role of plant-microbe interactions to sustain plant growth and development for a safer environment.


Asunto(s)
Nitratos , Nitritos , Nitratos/metabolismo , Nitritos/metabolismo , Nitrificación , Serratia marcescens/metabolismo , Desnitrificación , Desarrollo de la Planta , Nitrógeno
16.
Water Res ; 244: 120448, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37619305

RESUMEN

Granular sludge combined n-DAMO and Anammox (n-D/A) is an energy-efficient biotechnique for the simultaneous removal of nitrogen and dissolved methane from wastewater. However, the lack of knowledge so far about the metabolic interactions between n-DAMO and Anammox in response to operation condition in granular sludge restrains the development of this biotechnology. To address this gap, three independent membrane granular sludge reactors (MGSRs) were designed to carry out the granule-based n-D/A process under different conditions. We provided the first deep insights into the metabolic interactions between n-DAMO and Anammox in granular sludge via combined metagenomic and metatranscriptomic analyses. Our study unveiled a clear population shift of n-DAMO community from Candidatus Methanoperedens to Candidatus Methylomirabilis from sidestream to mainstream. Candidatus Methanoperedens with relative abundance of 25.2% played the major role in nitrate reduction and methane oxidation under sidestream condition, indicated by the high expression activities of mcrA and narG. Candidatus Methylomirabilis dominated the microbial community under mainstream condition with relative abundance of 32.1%, supported by the high expression activities of pmoA and hao. Furthermore, a transition of Anammox population from Candidatus Kuenenia to Candidatus Brocadia was also observed from sidestream to mainstream. Candidatus Kuenenia and Candidatus Brocadia jointly contributed to the primary anaerobic ammonium oxidation suggested by the high expression value of hdh and hzs. Candidatus Methylomirabilis was speculated to perform ammonium oxidation mediated by pMMO under mainstream condition. These findings might help to reveal the microbial interactions and ecological niches of n-DAMO and Anammox microorganisms, shedding light on the optimization and management of the granule-based n-D/A system.


Asunto(s)
Compuestos de Amonio , Aguas del Alcantarillado , Anaerobiosis , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos , Desnitrificación , Bacterias/genética , Bacterias/metabolismo , Oxidación-Reducción , Metano/metabolismo , Compuestos de Amonio/metabolismo , Nitrógeno/metabolismo
17.
Bioresour Technol ; 386: 129510, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37495161

RESUMEN

In this work, a bioprocess model was applied to first determine the impacts of influent substrates conditions on the granular bioreactor performing nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) and anammox integrated processes and then investigate the roles of granular sludge properties in regulating the bioreactor performance and start-up process. The ideal influent substrates conditions were identified at NO2--N/NH4+-N of 1:1 and dissolved CH4 concentration of 85 g COD m-3, which achieved 98.6% total nitrogen removal and 87.7% dissolved CH4 utilization. Under such ideal influent conditions, the initial properties of granular sludge didn't significantly affect the granular bioreactor performance. However, inoculation of granular sludge with a relatively small granular sludge size and a high abundance of n-DAMO archaea or/and anammox bacteria could effectively shorten the bioreactor start-up. Meanwhile, reducing the diffusivity of solutes within granular sludge was also beneficial for expediting the start-up process and promoting dissolved CH4 utilization.


Asunto(s)
Compuestos de Amonio , Nitratos , Aguas del Alcantarillado , Nitritos , Anaerobiosis , Metano , Oxidación Anaeróbica del Amoníaco , Desnitrificación , Reactores Biológicos/microbiología , Oxidación-Reducción , Nitrógeno
18.
Sci Total Environ ; 899: 165656, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37474054

RESUMEN

Manganese redox-stimulated bioremediation of nitrogen wastewater is receiving increasing attention. However, the nitrogen metabolic capacity and community evolution during manganese-mediated nitrogen transformation process under continued manganese domestication conditions are ambiguous. In this study, nitrogen- metabolizing microbial consortiums were incubated with synthesized Mn-humic acid complex (Mn-HA) for one month (M1), three months (M2) and six months (M3), respectively. During the Mn-HA incubation period, Bio-MnOx accompanying with bacterial consortiums (MnOB consortiums) with high TIN removal capacities were obtained. The TIN removal rates in M1, M2 and M3 were 0.220, 1.246 and 4.237 mg·L-1·h-1, respectively, which were 15.961, 90.006 and 1550.006 times higher than CK (Control Check group, no Mn-HA added group) (0.014 mg·L-1·h-1), respectively. Functional genes (amoA, AMX and narG) were most abundant in M3, which was associated with the highest nitrogen removal rate in M3. MnOB1 (bacterial consortium in M1), including Geobactor, Geothrix, Anaeromyxobacter and Bacillus, may be responsible for the Mnammox-NDMO (MnOx reduction coupled to ammonium oxidation - nitrate/nitrite-dependent low-valent Mn oxidation) process. MnOB3 (bacterial consortium in M2) enriched nitrifying bacteria Ellin6067, and denitrifying bacteria Denitratisoma, which dominated nitrogen transformation. MnOB6 (bacterial consortium in M3) enriched denitrifiers Denitratisoma, nitrifiers Ellin6067 and potential anammox bacteria SM1A02, Candidatus_Brocadia. Combined with the reduced abundance of Nitrospirae, a short-cut partial nitrification and denitrification (PND) or partial nitrification, denitrification and anammox (PNDA) could occurred in M2 and M3. It is suggested that community may have evolved into an energetically efficient short-cut nitrification, denitrification and anammox consortium to replace the full-range nitrification and denitrification community in M1 and CK under the continued manganese domestication conditions. Enhanced metabolic pathways of hydroxylamine oxidation and the nitric oxide reduction may confirm that PND or PNDA occurred in M2 and M3.


Asunto(s)
Desnitrificación , Manganeso , Manganeso/metabolismo , Nitrógeno/metabolismo , Domesticación , Nitrificación , Bacterias/metabolismo , Oxidación-Reducción , Reactores Biológicos/microbiología , Aguas del Alcantarillado
19.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36982159

RESUMEN

Pathological similarities between sarcoidosis (SA) and tuberculosis (TB) suggest the role of mycobacterial antigens in the etiopathogenesis of SA. The Dubaniewicz group revealed that not whole mycobacteria, but Mtb-HSP70, Mtb-HSP 65, and Mtb-HSP16 were detected in the lymph nodes, sera, and precipitated immune complexes in patients with SA and TB. In SA, the Mtb-HSP16 concentration was higher than that of Mtb-HSP70 and that of Mtb-HSP65, whereas in TB, the Mtb-HSP16 level was increased vs. Mtb-HSP70. A high Mtb-HSP16 level, induced by low dose-dependent nitrate/nitrite (NOx), may develop a mycobacterial or propionibacterial genetic dormancy program in SA. In contrast to TB, increased peroxynitrite concentration in supernatants of peripheral blood mononuclear cell cultures treated with Mtb-HSP may explain the low level of NOx detected in SA. In contrast to TB, monocytes in SA were resistant to Mtb-HSP-induced apoptosis, and CD4+T cell apoptosis was increased. Mtb-HSP-induced apoptosis of CD8+T cells was reduced in all tested groups. In Mtb-HSP-stimulated T cells, lower CD8+γδ+IL-4+T cell frequency with increased TNF-α,IL-6,IL-10 and decreased INF-γ,IL-2,IL-4 production were present in SA, as opposed to an increased presence of CD4+γδ+TCR cells with increased TNF-α,IL-6 levels in TB, vs. controls. Mtb-HSP modulating the level of co-stimulatory molecules, regulatory cells, apoptosis, clonal deletion, epitope spread, polyclonal activation and molecular mimicry between human and microbial HSPs may also participate in the induction of autoimmunity, considered in SA. In conclusion, in different genetically predisposed hosts, the same antigens, e.g., Mtb-HSP, may induce the development of TB or SA, including an autoimmune response in sarcoidosis.


Asunto(s)
Mycobacterium tuberculosis , Sarcoidosis , Tuberculosis , Humanos , Proteínas de Choque Térmico/metabolismo , Mycobacterium tuberculosis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Leucocitos Mononucleares/metabolismo , Interleucina-6/metabolismo , Interleucina-4/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo
20.
Int J Artif Organs ; 46(3): 129-134, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36825795

RESUMEN

BACKGROUNDS: Nitric oxide has a broad-spectrum antibacterial property promising as a new therapeutic agent for severe acute respiratory syndrome coronavirus-2 because nitric oxide donor (such as S-nitroso-N-acetylpenicillamine) reduces the replication of coronavirus-2. Patients with coronavirus disease 2019 undergoing dialysis generally have a higher mortality rate than the general population. Although the higher mortality rate in these patients may be related to their advanced age, it has been suggested that plasma nitrite and nitrate levels (products of nitric oxide metabolism) are significantly decreased after hemodialysis which may compromise the nitrate-nitrite-nitric oxide pathway and impair nitric oxide homeostasis. It results in increased cardiovascular mortality in patients undergoing dialysis. However, the profile of nitric oxide-producing substances is poorly understood during renal replacement therapy. METHODS: We simulated continuous hemodialysis and hemodiafiltration to measure the amount of nitric oxide (nitric oxide-producing substance) clearance in vitro. RESULTS: The results demonstrated increased nitric oxide clearance and higher clearance than creatinine (molecular weight: 113) and vitamin B12 (molecular weight: 1355) using highly efficient renal replacement therapy modes. CONCLUSION: The high nitric oxide clearance may have partly contributed to the high cardiovascular and coronavirus-2 mortality risk in patients on dialysis.


Asunto(s)
COVID-19 , Donantes de Óxido Nítrico , Humanos , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/uso terapéutico , Nitratos , Nitritos , Óxido Nítrico/metabolismo , Diálisis Renal , COVID-19/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA