Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Front Neurosci ; 18: 1351718, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449740

RESUMEN

Introduction: Parkinson's disease affects 2% of the population aged over 65 years and is the second most common neurodegenerative disorder in the general population. The appearance of motor symptoms is associated with the degeneration of dopaminergic neurons in the nigrostriatal pathway. Clinically significant nonmotor symptoms are also important for severe disability with disease progression. Pharmacological treatment with levodopa, which involves dopamine restitution, results in a temporary improvement in motor symptoms. Among the mechanisms underlying the pathogenesis of the disease are exacerbated oxidative stress, mitochondrial dysfunction, and neuroinflammation. A phytochemical prospecting study showed that the aqueous extract of the leaves from Swietenia macrophylla (Melineaceae), known as mahogany, has polyphenols with antioxidant and anti-inflammatory capacity in a significantly higher percentage than leaf extracts from other Amazonian plants. Furthermore, the antioxidant and anti-inflammatory capacity of aqueous extract of mahogany leaf has already been demonstrated in an in vitro model. In this study, we hypothesized that the aqueous extract of mahogany leaf (AEML) has a neuroprotective effect in a murine model of Parkinson's disease induced by 6-hydroxidopamine (6-OHDA), due to antioxidant and anti-inflammatory properties of its phenolic compounds. Methods: Mice were treated daily with the mahogany extract at a dose of 50 mg/kg, starting 7 days before 6-OHDA infusion until post-surgery day 7. Results and discussion: The animals from the 6-OHDA/mahogany group, which corresponds to animals injected with the toxin and treated with aqueous extract of the mahogany leaf, presented distinct behavioral phenotypes after apomorphine challenge and were therefore subdivided into 2 groups, 6-OHDA/mahogany F1 and 6-OHDA/mahogany F2. The F1 group showed a significant increase in contralateral rotations, whereas the F2 group did not show rotations after the apomorphine stimulus. In the F1 group, there was an increase, although not significant, in motor performance in the open field and elevated plus maze tests, whereas in the F2 group, there was significant improvement, which may be related to the lesser degree of injury to the nigrostriatal dopaminergic pathway. The TH+ histopathological analysis, a dopaminergic neuron marker, confirmed that the lesion to the nigrostriatal dopaminergic pathway was more pronounced in 6-OHDA/mahogany F1 than in 6-OHDA/mahogany F2. Our main result consisted of signs of improvement in the inflammatory profile in both the F1 and F2 6-OHDA/mahogany groups, such as a lower number of IBA-1+ microglial cells in the ventral striatum and substantia nigra pars compacta and a reduction in GFAP+ expression, an astrocyte marker, in the dorsal striatum. In this study, several bioactive compounds in the aqueous extract of mahogany leaf may have contributed to the observed beneficial effects. Further studies are necessary to better characterize their applicability for treating chronic degenerative diseases with inflammatory and oxidative bases, such as Parkinson's disease.

2.
J Chem Neuroanat ; 124: 102136, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35809809

RESUMEN

Senescence is a natural and progressive physiological event that leads to a series of morphophysiological alterations in the organism. The brain is the most vulnerable organ to both structural and functional changes during this process. Dopamine is a key neurotransmitter for the proper functioning of the brain, directly involved in circuitries related with emotions, learning, motivation and reward. One of the main dopamine- producing nuclei is the substantia nigra pars compacta (SNpc), which establish connections with the striatum forming the so-called nigrostriatal pathway. S100B is a calcium binding protein mainly expressed by astrocytes, involved in both intracellular and extracellular processes, and whose expression is increased following injury in the nervous tissue, being a useful marker in altered status of central nervous system. The present study aimed to analyze the impact of senescence on the cells immunoreactive for tyrosine hydroxylase (TH) and S100B along the nigrostriatal pathway of the rat. Our results show an decreased expression of S100B+ cells in SNpc. In addition, there was a significant decrease in TH immunoreactivity in both projection fibers and TH+ cell bodies. In the striatum, a decrease in TH immunoreactivity was also observed, as well as an enlargement of the white matter bundles. Our findings point out that senescence is related to the anatomical and neurochemical changes observed throughout the nigrostriatal pathway.


Asunto(s)
Dopamina , Tirosina 3-Monooxigenasa , Animales , Astrocitos/metabolismo , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Ratas , Subunidad beta de la Proteína de Unión al Calcio S100/análisis , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/farmacología , Sustancia Negra/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
3.
Eur J Neurosci ; 53(11): 3743-3767, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33818841

RESUMEN

Several useful animal models for parkinsonism have been developed so far. Haloperidol-induced catalepsy is often used as a rodent model for the study of motor impairments observed in Parkinson's disease and related disorders and for the screening of potential antiparkinsonian compounds. The objective of this systematic review is to identify publications that used the haloperidol-induced catalepsy model for parkinsonism and to explore the methodological characteristics and the main questions addressed in these studies. A careful systematic search of the literature was carried out by accessing articles in three different databases: Web of Science, PubMed and SCOPUS. The selection and inclusion of studies were performed based on the abstract and, subsequently, on full-text analysis. Data extraction included the objective of the study, study design and outcome of interest. Two hundred and fifty-five articles were included in the review. Publication years ranged from 1981 to 2020. Most studies used the model to explore the effects of potential treatments for parkinsonism. Although the methodological characteristics used are quite varied, most studies used Wistar rats as experimental subjects. The most frequent dose of haloperidol used was 1.0 mg/kg, and the horizontal bar test was the most used to assess catalepsy. The data presented here provide a framework for an evidence-based approach to the design of preclinical research on parkinsonism using the haloperidol-induced catalepsy model. This model has been used routinely and successfully and is likely to continue to play a critical role in the ongoing search for the next generation of therapeutic interventions for parkinsonism.


Asunto(s)
Catalepsia , Trastornos Parkinsonianos , Animales , Catalepsia/inducido químicamente , Modelos Animales de Enfermedad , Haloperidol/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Ratas , Ratas Wistar
4.
J Neurochem ; 149(3): 362-380, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30664247

RESUMEN

The process of locomotion is controlled by fine-tuned dopaminergic neurons in the Substantia Nigra pars-compacta (SNpc) that projects their axons to the dorsal striatum regulating cortical innervations of medium spiny neurons. Dysfunction in dopaminergic neurotransmission within the striatum leads to movement impairments, gaiting defects, and hypo-locomotion. Due to their high polarity and extreme axonal arborization, neurons depend on molecular motor proteins and microtubule-based transport for their normal function. Transport defects have been associated with neurodegeneration since axonopathies, axonal clogging, microtubule destabilization, and lower motor proteins levels were described in the brain of patients with Parkinson's Disease and other neurodegenerative disorders. However, the contribution of specific motor proteins to the regulation of the nigrostriatal network remains unclear. Here, we generated different conditional knockout mice for the kinesin heavy chain 5B subunit (Kif5b) of Kinesin-1 to unravel its contribution to locomotion. Interestingly, mice with neuronal Kif5b deletion showed hypo-locomotion, movement initiation deficits, and coordination impairments. High pressure liquid chromatography determined that dopamine (DA) metabolism is impaired in neuronal Kif5b-KO, while no dopaminergic cell loss was observed. However, the deletion of Kif5b only in dopaminergic neurons is not sufficient to induce locomotor defects. Noteworthy, pharmacological stimulation of DA release together with agonist or antagonist of DA receptors revealed selective D2-dependent movement initiation defects in neuronal Kif5b-KO. Finally, subcellular fractionation from striatum showed that Kif5b deletion reduced the amount of dopamine D2 receptor in synaptic plasma membranes. Together, these results revealed an important role for Kif5b in the modulation of the striatal network that is relevant to the overall locomotor response. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Asunto(s)
Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Cinesinas/metabolismo , Locomoción/fisiología , Receptores de Dopamina D2/metabolismo , Animales , Ratones , Ratones Noqueados
5.
Toxicol Pathol ; 46(3): 348-358, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29683090

RESUMEN

Aging is a multifactorial process associated with functional deficits, and the brain is more prone to developing chronic degenerative diseases such as Parkinson's disease. Several groups have tried to correlate the age-related ultrastructural alterations to the neurodegeneration process using in vivo pharmacological models, but due to the limitations of the animal models, particularly in aged animals, the results are difficult to interpret. In this work, we investigated neurodegeneration induced by rotenone, as a pharmacological model of Parkinson's disease, in both young and aged Wistar rats. We assessed animal mobility, tyrosine hydroxylase staining in the substantia nigra pars compacta (SNpc), and TdT-mediated dUTP-biotin nick end labeling-positive nuclei and reactive oxygen species production in the striatum. Interestingly, the mobility impairment, dopaminergic neuron loss, and elevated number of apoptotic nuclei in the striatum of aged control rats were similar to young rotenone-treated animals. Moreover, we observed many ultrastructural alterations, such as swollen mitochondria in the striatum, and massive lipofuscin deposits in the SNpc of the aged rotenone-treated animals. We conclude that the rotenone model can be employed to explore age-related alterations in the ontogeny that can increase vulnerability in the striatum and SNpc, which may contribute to Parkinson's disease pathogenesis.


Asunto(s)
Envejecimiento/patología , Cuerpo Estriado/patología , Trastornos Parkinsonianos/patología , Sustancia Negra/patología , Animales , Ratas , Ratas Wistar , Rotenona/toxicidad , Desacopladores/toxicidad
6.
Salud ment ; Salud ment;36(3): 211-218, may.-jun. 2013. tab
Artículo en Español | LILACS-Express | LILACS | ID: lil-689666

RESUMEN

Biochemical and behavioral evidence indicates that the dopaminergic mesolimbic system plays a key role in the mechanisms of reinforcement and reward elicited by alcohol (ethanol) and other drugs of abuse. In addition, the dopaminergic activity of the nigrostriatal pathway has been proposed to determine brain sensitivity to ethanol, a process which could be associated to drug addiction. Besides dopamine, several neurotransmitters and neuromodulators are involved in ethanol reinforcement, including gamma aminobutyric acid (GABA), glutamate, serotonin, acetylcholine and opioid peptides (enkephalins, endorphins and dynorphins). Ethanol and opioids share several pharmacological properties and exhibit similar behavioral effects in animals and humans. These and other studies suggest that the alcohol reinforcing properties are due, at least in part, to the ethanol-induced activation of endogenous opioidergic systems. This activation could in turn increase the hedonic value and the reinforcing effects of the drug. Thus, ethanol-induced changes in opioidergic transmission could contribute to alcohol intoxication and to the neuroadaptive responses produced by the long-lasting exposure to the drug. Opioidergic transmission may be altered by ethanol at different levels, including biosynthesis, release and inactivation of opioid peptides, as well as binding of endogenous opioids to their receptors. Several studies suggest that mu and delta opioid receptors play a key role in ethanol reinforcement and dependence. Therefore, enkephalins and (β-endorphin could mediate ethanol actions in the brain and play a major role in high alcohol drinking behavior. During the last years, our research group has focused on the role of the endogenous opioid systems in these processes. Evidence obtained in our laboratory suggests that enkephalins and (β-endorphin differentially and selectively participate in ethanol reinforcement and dependence.


Evidencias bioquímicas y conductuales indican que el sistema dopaminérgico mesolímbico cumple un papel fundamental en los mecanismos de reforzamiento y recompensa del alcohol (etanol) y otras drogas de abuso. Se ha propuesto también que la actividad de la vía dopaminérgica nigroestriatal determina la sensibilidad cerebral a etanol, lo que parece estar directamente relacionado con los procesos de adicción a la droga. Además de la dopamina, varios neurotransmisores y neuromoduladores están implicados en los mecanismos de reforzamiento del etanol, entre ellos, el ácido gama-aminobutírico (GABA), el glutamato, la serotonina, la acetilcolina y los péptidos opioides (encefalinas, endorfinas y dinorfinas). El alcohol y los opioides comparten características farmacológicas y exhiben efectos similares sobre el comportamiento en animales y en el hombre. Éstos y otros estudios sugieren que las propiedades reforzadoras del etanol se deben, al menos parcialmente, a la activación de los sistemas endógenos de péptidos opioides, proceso que es inducido por el propio alcohol. Esta activación podría, a su vez, aumentar el valor hedónico y los efectos reforzadores de la droga. Los cambios inducidos por etanol sobre la transmisión de opioides podrían contribuir de manera importante a los procesos de intoxicación y a las respuestas neuronales adaptativas que produce el consumo prolongado de la droga. La transmisión opioidérgica puede ser afectada por etanol a distintos niveles, incluyendo la biosíntesis, liberación e inactivación de los opioides endógenos, así como la unión de éstos a sus receptores. Numerosas evidencias sugieren que los receptores opioides mu y delta desempeñan un papel fundamental en el reforzamiento y la dependencia al etanol. Así, las encefalinas y la (β-endorfina actuarían como mediadores fisiológicos de las acciones del etanol en el cerebro, desempeñando un papel crucial en las conductas de alto consumo de la droga. En los últimos años, nuestro grupo se ha centrado en investigar el papel de los sistemas endógenos de péptidos opioides en estos procesos. Las evidencias obtenidas en nuestro laboratorio sugieren que las encefalinas y la (β-endorfina participan en forma diferencial y selectiva en el reforzamiento y la dependencia al etanol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA