Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cells ; 9(7)2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668809

RESUMEN

GABA signaling is involved in a wide range of neuronal functions, such as synchronization of action potential firing, synaptic plasticity and neuronal development. Sustained GABA signaling requires efficient mechanisms for the replenishment of the neurotransmitter pool of GABA. The prevailing theory is that exocytotically released GABA may be transported into perisynaptic astroglia and converted to glutamine, which is then shuttled back to the neurons for resynthesis of GABA-i.e., the glutamate/GABA-glutamine (GGG) cycle. However, an unequivocal demonstration of astroglia-to-nerve terminal transport of glutamine and the contribution of astroglia-derived glutamine to neurotransmitter GABA synthesis is lacking. By genetic inactivation of the amino acid transporter Solute carrier 38 member a1 (Slc38a1)-which is enriched on parvalbumin+ GABAergic neurons-and by intraperitoneal injection of radiolabeled acetate (which is metabolized to glutamine in astroglial cells), we show that Slc38a1 mediates import of astroglia-derived glutamine into GABAergic neurons for synthesis of GABA. In brain slices, we demonstrate the role of Slc38a1 for the uptake of glutamine specifically into GABAergic nerve terminals for the synthesis of GABA depending on demand and glutamine supply. Thus, while leaving room for other pathways, our study demonstrates a key role of Slc38a1 for newly formed GABA, in harmony with the existence of a GGG cycle.


Asunto(s)
Sistema de Transporte de Aminoácidos A/metabolismo , Astrocitos/metabolismo , Interneuronas/metabolismo , Neurotransmisores/metabolismo , Ácido gamma-Aminobutírico/biosíntesis , Acetatos/metabolismo , Animales , Glutamina/metabolismo , Ratones , Modelos Biológicos , Sinapsis/metabolismo
2.
Cereb Cortex ; 29(12): 5166-5179, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31050701

RESUMEN

GABA signaling sustains fundamental brain functions, from nervous system development to the synchronization of population activity and synaptic plasticity. Despite these pivotal features, molecular determinants underscoring the rapid and cell-autonomous replenishment of the vesicular neurotransmitter GABA and its impact on synaptic plasticity remain elusive. Here, we show that genetic disruption of the glutamine transporter Slc38a1 in mice hampers GABA synthesis, modifies synaptic vesicle morphology in GABAergic presynapses and impairs critical period plasticity. We demonstrate that Slc38a1-mediated glutamine transport regulates vesicular GABA content, induces high-frequency membrane oscillations and shapes cortical processing and plasticity. Taken together, this work shows that Slc38a1 is not merely a transporter accumulating glutamine for metabolic purposes, but a key component regulating several neuronal functions.


Asunto(s)
Sistema de Transporte de Aminoácidos A/metabolismo , Encéfalo/fisiología , Neuronas GABAérgicas/fisiología , Plasticidad Neuronal/fisiología , Transmisión Sináptica/fisiología , Animales , Ratones
4.
Front Endocrinol (Lausanne) ; 4: 138, 2013 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-24106489

RESUMEN

The system N transporter SN1 (also known as SNAT3) is enriched on perisynaptic astroglial cell membranes. SN1 mediates electroneutral and bidirectional glutamine transport, and regulates the intracellular as well as the extracellular concentrations of glutamine. We hypothesize that SN1 participates in the glutamate/γ-aminobutyric acid (GABA)-glutamine cycle and regulates the amount of glutamine supplied to the neurons for replenishment of the neurotransmitter pools of glutamate and GABA. We also hypothesize that its activity on the plasma membrane is regulated by protein kinase C (PKC)-mediated phosphorylation and that SN1 activity has an impact on synaptic plasticity. This review discusses reports on the regulation of SN1 by PKC and presents a consolidated model for regulation and degradation of SN1 and the subsequent functional implications. As SN1 function is likely also regulated by PKC-mediated phosphorylation in peripheral organs, the same mechanisms may, thus, have impact on e.g., pH regulation in the kidney, urea formation in the liver, and insulin secretion in the pancreas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA